Vol. 35
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-18
Application of the Particle Swarm Optimization to the Computation of the GO/UTD Reflection Points Over NURBS Surfaces
By
Progress In Electromagnetics Research Letters, Vol. 35, 19-28, 2012
Abstract
A new method to find the Geometrical Optics/Uniform Theory of Diffraction reflection points over Non Uniform Rational B-Splines surfaces is presented. The approach is based on the Particle Swarm Optimization (PSO) technique, and the cost function used to find the reflection points is based on Snell's law. The technique can be used as an alternative to classic minimization techniques in cases where convergence problems arise.
Citation
Oscar Gutierrez Blanco, Francisco Manuel Adana Herrero, and Antonio Del Corte Valiente, "Application of the Particle Swarm Optimization to the Computation of the GO/UTD Reflection Points Over NURBS Surfaces," Progress In Electromagnetics Research Letters, Vol. 35, 19-28, 2012.
doi:10.2528/PIERL12062507
References

1. Namara, D. A., C. W. I. Pistorious, and J. A. G. Maherbe, C. W. I. Pistorious, and J. A. G. Maherbe, Artech House, 1990.

2. Gomez, R., L. E. Garcia Castillo, F. Saez de Adana, and M. Salazar-Palma, "A novel hybrid FEM high frequency technique for the analysis of scattering and radiation problems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 939-956, 2004.
doi:10.1163/156939304323105763

3. Polka, L. A., C. A. Balanis, and A. C. Polycarpou, "High-frequency methods for multiple diffraction modeling: Application and comparison," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 9-10, 1223-1246, 1994.
doi:10.1163/156939394X01019

4. Catedra, M. F., J. Perez, F. Saez de Adana, and O. Gutierrez, "Efficient ray-tracing techniques for three-dimensional analysis of propagation in mobile communications: Application to picocell and microcell scenarios," IEEE Antennas and Propagation Magazine, Vol. 40, No. 2, 15-28, 1998.
doi:10.1109/74.683539

5. Rustako, A. J., N. Amitay, G. J. Owens, and R. S. Roman, "Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications," IEEE Transactions on Vehicular Technology, Vol. 40, No. 2, 203-210, 1991.
doi:10.1109/25.69989

6. Perez, J., J. A. Saiz, O. M. Conde, R. P. Torres, M. F. Catedra, "Analysis of antennas on board arbitrary structures modeled by NURBS surfaces," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 6, 1045-1053, 1997.
doi:10.1109/8.585754

7. Lozano, L., F. Saez de Adana, and M. F. Catedra, "Ray-tracing acceleration techniques to compute diffraction and double and triple e®ects in RCS prediction methods based on physical optics," PIERS Proceedings, 573-577, Tokyo, Japan, Aug. 2-5, 2006.

8. Wang, N., Y. Zhang, and C. H. Liang, "Creeping ray-tracing algorithm of UTD method based on NURBS models with the source on surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1981-1990, 2006.
doi:10.1163/156939306779322602

9. Nocedal, J., "Theory of algorithms for unconstrained optimization," Acta Numerica, Vol. 1, 199-242, Department of Electrical Engineering and Computer Science, Northwestern University,1992.

10. Byrne, L., "A first course in optimization,", 1, 494, Department of Mathematical Sciences, University of Massachusetts Lowell, 2012.

11. Ming, C., Z. Yu, and C. H. Liang, "Calculation of the field distribution near electrically large NURBS surfaces with physical optics method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886

12. Gonzalez, I., O. Gutierrez, F. Saez de Adana, and M. Felipe Catedra, "Computation of the scattering of arbitrary shape bodies modeled by parametric surfaces using the multilevel fast multipole method," PIERS Proceedings, 672-676, Tokyo, Japan, Aug. 2-5, 2006.

13. Adana, F. S., O. Gutierrez, I. Gonzalez, J. Perez, and M. F. Catedra, "General method for the ray tracing on convex bodies," Applied Computational Electromagnetics Society Journal, Vol. 16, No. 1, 20-26, 2001.

14. Shewchuk, R., "An introduction to the conjugate gradient method without the agonizing pain,", 1, 64, School of Computer Science, Carnegie Mellon University, 1994.

15. Pytlak, R., "Conjugate gradient methods for non-convex problems," Non-convex Optimization and Its Applications, 63,108, Springer-Verlag, Berlin, Heidelberg, 2009 .

16. Trgo, A., "On numerical approximation of non-convex variational problems using stochastic optimization algorithm,", 1, 23, Department of Mathematical Sciences, Carnegie Mellon University, 1995.

17. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 2004.
doi:10.1109/TAP.2004.823969

18. Chamaani, S., S. A. Mirta, M. Teshnehlab, M. A. Shooredeli, V. Seydi, and , "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

19. Poyatos, D., D. Escot, I. Montiel, I. Gonzalez, F. Saez de Adana, and M. F. Catedra, "Evaluation of particle swam optimization applied to single snapshot direction of arrival estimation," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2251-2258, 2008.
doi:10.1163/156939308787522528

20. Rubio, A., O. Gutierrez Blanco, F. Saez de Adana, and M. F. Catedra, "Calculation of GTD/UTD reflection points over parametric surfaces using particle swarm optimization," Progress In Electromagnetics Research Symposium, 276, Prague, Czech Republic, Aug. 27-30, 2007.

21. Salakhutdinov, R., "E±cient optimization algorithms for learning,", 1, 84, Department of Computer Science, University of Toronto, 2003.

22. Salakhutdinov, R., "On the convergence of bound optimization algorithms," Proc. 19th Conference in Uncertainty in Artificial Intelligence , 509-516, University of Toronto, 2003.

23. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, 1989.