Vol. 34
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-08-30
A Wideband Trapezoidal Dielectric Resonator Antenna with Circular Polarization
By
Progress In Electromagnetics Research Letters, Vol. 34, 91-100, 2012
Abstract
A new design of a circularly-polarized (CP) trapezoidal dielectric resonator antenna (DRA) for wideband wireless application is presented. A single-layered feed is used to excite the trapezoidal shaped dielectric resonator to increase resonant frequency and axial ratio. Besides its structure simplicity, ease of fabrication and low-cost, the proposed antenna features good measured impedance bandwidth, 87.3% at 4.21GHz to 10.72 GHz frequency bands. Moreover, the antenna also produces 3-dB axial ratio bandwidth of about 850 MHz from 5.13 GHz to 6 GHz. The overall size of DRA is 21 mm x 35 mm, which is suitable for mobile devices. Parametric study and measurement results are presented and discussed. Very good agreement is demonstrated between simulated and measured results.
Citation
Shadi Danesh, Sharul Kamal Abdul Rahim, and Mohsen Khalily, "A Wideband Trapezoidal Dielectric Resonator Antenna with Circular Polarization," Progress In Electromagnetics Research Letters, Vol. 34, 91-100, 2012.
doi:10.2528/PIERL12062505
References

1. Wee, F. H., M. F. B. A. Malek, S. Sreekantan, A. U. Al-Amani, F. Ghani, and K. Y. You, "Investigation of the characteristics of Barium Strontium Titanate (BST) dielectric resonator ceramic loaded on array antenna," Progress In Electromagnetics Research, Vol. 121, 181-213, 2011.
doi:10.2528/PIER11080815

2. Kishk, A. A., A. W. Glisson, and G. P. Junker, "Bandwidth enhancement for split cylindrical dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 33, 97-118, 2001.
doi:10.2528/PIER00122803

3. Ryu, K. S. and A. A. Kishk, "Ultra wideband dielectric resonator antenna with broadside patterns mounted on a vertical ground plane edge," IEEE Trans. Antennas Propag., Vol. 8, No. 4, 1047-1053, Apr. 2010.
doi:10.1109/TAP.2010.2041160

4. Guo, Y.-X., Y.-F. Ruan, and X.-Q. Shi, "Wide-band stacked double annular-ring dielectric resonator antenna at the end-fire mode operation," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3394-3397, Oct. 2005.

5. Walsh, A. G., S. D. Young, and S. A. Long, "An investigation of stacked and embedded cylindrical dielectric resonator antennas," IEEE Antennas Wireless Propag. Lett., Vol. 5, 130-133, 2006.
doi:10.1109/LAWP.2006.873935

6. Zainud-Deen, S. H., H. A. El-Azem Malhat, and K. H. Awadalla, "A single-feed cylindrical superquadric dielectric resonator antenna for circular polarization," Progress In Electromagnetics Research, Vol. 85, 409-424, 2008.
doi:10.2528/PIER08090904

7. Abdulla, P. and A. Chakraborty, "Rectangular waveguide-fed hemispherical dielectric resonator antenna," Progress In Electromagnetics Research, Vol. 83, 225-244, 2008.
doi:10.2528/PIER08050701

8. Saed, M. A. and R. Yadla, "Microstrip-fed low profile and compact dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 56, 151-162, 2006.
doi:10.2528/PIER05041401

9. Kumar, A. V. P., V. Hamsakutty, J. Yohannan, and K. T. Mathew, "Microstripline fed cylindrical dielectric resonator antenna with a coplanar parasitic strip," Progress In Electromagnetics Research, Vol. 60, 143-152, 2006.
doi:10.2528/PIER05121301

10. Gopakumar, C. and K. T. Mathew, "A wideband microstrip-line-fed isosceles trapezoidal dielectric resonator antenna with modified ground plane," Progress In Electromagnetics Research C, Vol. 16, 127-136, 2010.
doi:10.2528/PIERC10080804

11. Zainud-Deen, S. H., H. A. El-Azem Malhat, and K. H. Awadalla, "A Single-feed cylindrical superquadric dielectric resonator antenna for circular polarization," Progress In Electromagnetics Research, Vol. 85, 409-424, 2008.
doi:10.2528/PIER08090904

12. Khalily, M., M. K. A. Rahim, A. K. mehrabadi, and M. R. Kamarudin, "A compact circularly polarized and wideband rectangular dielectric resonator antenna," IEEE International RF and Microwave Conference (RFM 2011), Malaysia, 2011.

13. Jou, C. F., J.-W. Wu, and C.-J. Wang, "Novel broadband monopole antennas with dual-band circular polarization," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1027-1034, Apr. 2009.
doi:10.1109/TAP.2009.2015827

14. Kishak, A. A., "An elliptic dielectric resonator antenna designed for circular polarization with single feed," Microw. Opt. Technol. Lett., Vol. 37, 454-456, Jun. 2003.
doi:10.1002/mop.10948

15. Leung, K. W. and H. K. Ng, "Theory and experiment of circularly polarized dielectric resonator antenna with a parasitic patch," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 405-412, Mar. 2003.
doi:10.1109/TAP.2003.809844

16. Li, B. and K. W. Leung, "Strip-fed rectangular dielectric resonator antenna with/without a parasitic patch," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2200-2207, Jul. 2005.

17. Chair, R., S. L. S. Yang, A. A. Kishk, K. F. Lee, and K. M. Luk, "Aperture fed wideband circularly polarized rectangular stair shaped dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1350-1352, Apr. 2006.
doi:10.1109/TAP.2006.872665

18. Pan, Y. and K. W. Leung, "Wideband circularly polarized trapezoidal dielectric resonator antenna," IEEE Antennas Wireless Propag. Lett., Vol. 9, 588-591, 2010.

19. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1348-1356, Sep. 1997.
doi:10.1109/8.623123

20., CST: Microwave Studio Based on the Finite Integration Technique, 2011.
doi:10.1109/8.623123