Vol. 25
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-10
Realization of the Perfect Electromagnetic Conductor Circular Cylinder Using Anisotropic Media
By
Progress In Electromagnetics Research M, Vol. 25, 173-184, 2012
Abstract
In this paper, an analytical solution is investigated for the twodimensional problem of electromagnetic scattering of a line source from a perfect electromagnetic conductor (PEMC) circular cylinder coated with an anisotropic media. In the anisotropic region, the relative permittivity and permeability tensors, when referred to principal axes (ρ, φ, z), are biaxial and diagonal. It is demonstrated that the relations of electromagnetic field vectors in anisotropic medium is equal to a PEMC boundary conditions when the parameters of the anisotropic region are chosen in an appropriate manner. Therefore, this region can act as a PEMC cylinder.
Citation
Nasser Montaseri, Mohammad Soleimani, and Ali Abdolali, "Realization of the Perfect Electromagnetic Conductor Circular Cylinder Using Anisotropic Media," Progress In Electromagnetics Research M, Vol. 25, 173-184, 2012.
doi:10.2528/PIERM12062005
References

1. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

2. Lindell, I. V. and A. H. Sihvola, "Losses in PEMC boundary," IEEE Trans. on Antennas and Propag., Vol. 54, No. 9, 2553-2558, 2006.
doi:10.1109/TAP.2006.880740

3. Sihvola, A. H. and I. V. Lindell, "Possible applications of perfect electromagnetic conductor (PEMC) media," Proc. the 1st Eur. Conf. on Antennas and Propag., EuCAP, 1-6, Nice, France, Nov. 2006.

4. Lindell, I. V. and A. H. Sihvola, "Realization of the PEMC boundary," IEEE Trans. on Antennas and Propag., Vol. 53, 3012-3018, 2005.
doi:10.1109/TAP.2005.854524

5. Sun, J., W. Sun, T. Jiang, and Y. Feng, "Directive electromagnetic radiation of a line source scattered by a conducting cylinder coated with left-handed metamaterial," Microw. Opt. Technol. Lett., Vol. 47, 274-279, 2005.
doi:10.1002/mop.21145

6. Ahmed, A. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetic Research, Vol. 92, 91-102, 2009.
doi:10.2528/PIER09030503

7. Massoudi, H., N. J. Damaskos, and P. L. E. Uslenghi, "Scattering by a composite and anisotropic circular cylindrical structure: Exact solution," Electromagnetics, Vol. 8, 71-83, 1988.
doi:10.1080/02726348808908206

8. Ahmed, A. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder coated with a metamaterial having negative permittivity and/or permeability," Opt. Communication, 5664-5670, 2008.
doi:10.1016/j.optcom.2008.09.011

9. Mehmood, M. Q. and M. J. Mughal, "Analysis of focal region fields of PEMC Gregorian system embedded in homogenous chiral medium," Progress In Electromagnetics Research Letters, Vol. 18, 155-163, 2010.
doi:10.2528/PIERL10100301

10. Ghaffar, A., N. Mehmood, M. Shoaib, M. Y. Naz, A. Illahi, and Q. A. Naqvi, "Scattering of a radially oriented hertz dipole field by a perfect electromagnetic conductor (PEMC) sphere," Progress In Electromagnetics Research B, Vol. 42, 163-180, 2012.

11. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Realization of the PEMC boundary," IEEE Trans. on Antennas and Propag., Vol. 58, No. 11, 2781-2792, 2010.

12. R. F., Harrington, Time-harmonic Electromagnetic Fields, IEEE Press, 2001.