Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-08-13
Millimeter-Wave Elliptical Lens Antenna for Fan-Beam Monopulse Applications
By
Progress In Electromagnetics Research Letters, Vol. 33, 197-205, 2012
Abstract
A novel two-dimensional elliptical lens monopulse antenna at millimeter-wave frequencies is presented using the technique of dielectric-filled parallel plates where TE10 mode propagates. A cavity-backed aperture-coupled elliptical patch antenna array with sum/difference ports is located at the back of the elliptical lens as a feeding antenna. The lens antenna is designed, fabricated and tested at 35 GHz. Measurements show clean and symmetrical fan-beam patterns are realized for both the sum and the difference beams. The measured 3-dB E- and H-plane beamwidths of the sum pattern are 5.3° and 37°, respectively. A gain of 16.7 dBi is realized for the sum beam (86% radiation efficiency), while a deep null of -32.4 dB is achieved for the difference beam. In addition, a 10-dB impedance bandwidth of 7.1% is measured for both the sum and difference beams.
Citation
Changzhou Hua, Xidong Wu, Nan Yang, and Wen Wu, "Millimeter-Wave Elliptical Lens Antenna for Fan-Beam Monopulse Applications," Progress In Electromagnetics Research Letters, Vol. 33, 197-205, 2012.
doi:10.2528/PIERL12061117
References

1. Sherman, S. M., Monopulse Principles and Techniques, Artech House, 1984.

2. Laheurte, J. M., "Uniplanar monopulse antenna based on odd/even mode excitation of coplanar line," Electronics Lett., Vol. 37, No. 6, 338-340, 2001.
doi:10.1049/el:20010247

3. Kim, S. G. and K. Chang, "Low-cost monopulse antenna using bi-directionally-fed microstrip patch array," Electronics Lett., Vol. 39, No. 20, 1428-1429, 2003.
doi:10.1049/el:20030963

4. Wang, H., D. G. Fang, and X. G. Chen, "A compact single layer monopulse microstrip antenna array," IEEE Trans. Antennas Propag。, Vol. 43, No. 1, 503-509, 2006.
doi:10.1109/TAP.2005.863103

5. Cheng, Y. J., W. Hong, and K. Wu, "Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)," EEE Trans. Antennas Propag., Vol. 56, No. 9, 2903-2909, 2008.
doi:10.1109/TAP.2008.928797

6. Rebeiz, G. M., "Millimeter-wave and terahertz integrated circuit antennas," Proceedings of the IEEE, Vol. 80, No. 11, 1748-1770, 1992.
doi:10.1109/5.175253

7. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microw. Theory Tech。, Vol. 41, No. 10, 1738-1749, 1993.
doi:10.1109/22.247919

8. Wu, X., G. V. Eleftheriades, and T. E. Van Deventer-Perkins, "Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 431-441, 2001.
doi:10.1109/22.910546

9. Rolland, A., R. Sauleau, and L. Le Coq, "Flat Shaped Dielectric Lens Antenna for 60-GHz Applications," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4041-4048, 2011.
doi:10.1109/TAP.2011.2164218

10. Raman, S., N. S. Barker, and G. M. Rebeiz, "A W-band dielectric-lens-based integrated monopulse radar receiver," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2308-2316, 1998.
doi:10.1109/22.739216

11. Xue, L. and V. Fusco, "Patch fed planar dielectric slab extended hemi-elliptical lens antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 661-666, 2008.
doi:10.1109/TAP.2008.916974

12. Wu, X. and J. J. Laurin, "Fan-beam millimeter-wave antenna design based on the cylindrical Luneberg lens," EEE Trans. Antennas Propag., Vol. 55, No. 8, 2147-2156, 2007.
doi:10.1109/TAP.2007.901843

13. Arand, B. A., M. Hakkak, K. Forooraghi, and J. R. Mohassel, "Analysis of aperture antennas above lossy half-space," Progress In Electromagnetics Research, Vol. 44, 39-55, 2004.
doi:10.2528/PIER03022203

14. Song, Y. and A. R. Sebak, "Radiation pattern of aperture coupled prolate Hemispheroidal Dielectric Resonator Antenna," Progress In Electromagnetics Research, Vol. 58, 115-133, 2006.
doi:10.2528/PIER05072804

15. Wu, T., Y. Li, S.-X. Gong, and Y. Liu, "A novel low RCS microstrip antenna using aperture coupled microstrip dipoles," Journal of Electromagnetic Waves and Application, Vol. 22, No. 7, 953-963, 2008.
doi:10.1163/156939308784150128

16. Zheng, J.-H., Y. Liu, and S.-X. Gong, "Aperture coupled microstrip antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
doi:10.2528/PIERL08013102

17. Lai, C.-H., T.-Y. Han, T.-R. Chen, and , "Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.
doi:10.2528/PIERL08111805

18. Cheng, H. R., X.-Q. Chen, L. Chen, and X.-W. Shi, "Design of a fractal dual-polarized aperture coupled microstrip antenna," Progress In Electromagnetics Research Letters, Vol. 9, 175-181, 2009.
doi:10.2528/PIERL09060102

19. Kim, J. P. and W. S. Park, "Novel configurations of planar multilayer magic-T using microstrip-slotline transitions," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1683-1688, 2002.
doi:10.1109/TMTT.2002.800387