Vol. 130
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-03
Evaluation of Lightning Return Stroke Current Using Measured Electromagnetic Fields
By
Progress In Electromagnetics Research, Vol. 130, 581-600, 2012
Abstract
The lightning return stroke current is an important parameter for considering the effect of lightning on power lines. In this study, a numerical method is proposed to evaluate the return stroke current based on measured electromagnetic fields at an observation point in the time domain. The proposed method considers all field components and the full wave shape of the current without the use of a special current model as a basic assumption compared to previous methods. Furthermore, the proposed algorithm is validated using measured fields obtained from a triggered lightning experiment. The results show a good agreement between the simulated field based on the evaluated currents from the proposed method and the corresponding measured field at a remote observation point. The proposed method can determine current wave shapes related to a greater number of lightning occurrences compared to the direct measurement of the current.
Citation
Mahdi Izadi, Mohd Zainal Abidin Ab Kadir, Chandima Gomes, and Vernon Cooray, "Evaluation of Lightning Return Stroke Current Using Measured Electromagnetic Fields," Progress In Electromagnetics Research, Vol. 130, 581-600, 2012.
doi:10.2528/PIER12060712
References

1. Rakov, V., M. A. Uman, and K. J. Rambo, "A review of ten years of triggered-lightning experiments at Camp Blanding, Florida," Atmospheric Research, Vol. 76, 503-517, 2005.
doi:10.1016/j.atmosres.2004.11.028

2. Popov, M., S. He, and R. Thottappillil, "Reconstruction of lightning currents and return stroke model parameters using remote electromagnetic fields," Journal of Geophysical Research, Vol. 105, 24469-24481, 2000.
doi:10.1029/2000JD900283

3. Andreotti, A., D. Assante, S. Falco, and L. Verolino, "An improved procedure for the return stroke current identification," IEEE Transactions on Magnetics, Vol. 41, 1872-1875, 2005.
doi:10.1109/TMAG.2005.846283

4. Milewski, M. and A. Hussein, "Lightning return-stroke transmission line model based on CN tower lightning data and derivative of Heidler function," Canadian Conference on Electrical and Computer Engineering (CCECE), 2008.

5. Hussein, A., M. Milewski, W. Janischewskyj, F. Noor, and F. Jabbar, "Characteristics of lightning flashes striking the CN Tower below its tip ," Journal of Electrostatics, Vol. 65, 307-315, 2007.
doi:10.1016/j.elstat.2006.09.011

6. Kodali, V., V. Rakov, M. Uman, K. Rambo, G. Schnetzer, J. Schoene, and J. Jerauld, "Triggered-lightning properties inferred from measured currents and very close electric fields," Atmospheric Research, Vol. 76, 355-376, 2005.
doi:10.1016/j.atmosres.2004.11.036

7. Rachidi, F., J. Bermudez, M. Rubinstein, and V. Rakov, "On the estimation of lightning peak currents from measured fields using lightning location systems ," Journal of Electrostatics, Vol. 60, 121-129, 2004.
doi:10.1016/j.elstat.2004.01.010

8. Uman, M. A. and D. K. McLain, "Lightning return stroke current from magnetic and radiation field measurements," Journal of Geophysical Research, Vol. 75, 5143-5147, 1970.
doi:10.1029/JC075i027p05143

9. Uman, M. A., D. K. McLain, and E. Krider, "The electromagnetic radiation from a finite antenna," Amer. J. Phys., Vol. 43, 33-38, 1975.
doi:10.1119/1.10027

10. Shoory, A., F. Rachidi, M. Rubinstein, R. Moini, and S. H. Sadeghi, "Analytical expressions for zero-crossing times in lightning return-stroke engineering models," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, 963-974, 2009.
doi:10.1109/TEMC.2009.2029699

11. Rachidi, F. and C. Nucci, "On the Master, Uman, Lin, Standler and the modified transmission line lightning return stroke current models ," Journal of Geophysical Research, Vol. 95, 20389-20393, 1990.
doi:10.1029/JD095iD12p20389

12. Thottappillil, R. and M. Uman, "Comparison of lightning return-stroke models," Journal of Geophysical Research, Vol. 98, 22903, 1993.
doi:10.1029/93JD02185

13. Andreotti, A., U. De Martinis, and L. Verolino, "An inverse procedure for the return stroke current identification," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, 155-160, 2002.
doi:10.1109/15.925535

14. Andreotti, A., F. Delfino, P. Girdinio, and L. Verolino, "An identification procedure for lightning return strokes," Journal of Electrostatics, Vol. 51, 326-332, 2001.
doi:10.1016/S0304-3886(01)00097-3

15. Andreotti, A., F. Delfino, P. Girdinio, and L. Verolino, "A field-based inverse algorithm for the identification of different height lightning return strokes," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 20, 724-731, 2001.
doi:10.1108/03321640110393716

16. Rakov, V., "Characterization of lightning electromagnetic fields and their modeling," 14th Int. Zurich Symposium on Electromagnetic Compatibility, 3-16, Zurich, 2001.

17. Bizjaev, A., V. Larionov, and E. Prokhorov, "Energetic characteristics of lightning channel," 20th Int. Conf. Lightning Protection, 1.1, Switzerland, 1990.

18. Dubovoy, E., M. Mikhailov, A. Ogonkov, and V. Pryazhinsky, "Measurement and numerical modeling of radio sounding re°ection from a lightning channel," Journal of Geophysical Research, Vol. 100, 1497-1502, 1995.
doi:10.1029/94JD00965

19. Dubovoy, E., V. Pryazhinsky, and G. Chitanava, "Calculation of energy dissipation in lightning channel," Meteorologiya i Gidrologiya, Vol. 2, 4-45, 1991.

20. Podgorski, A. S. and J. A. Landt, "Three dimensional time domain modelling of lightning," IEEE Transactions on Power Delivery, Vol. 2, 931-938, 1987.
doi:10.1109/TPWRD.1987.4308198

21. Moini, R., B. Kordi, G. Rafi, and V. Rakov, "A new lightning return stroke model based on antenna theory," Journal of Geophysical Research, Vol. 105, 29693-29702, 2000.
doi:10.1029/2000JD900541

22. Moini, R., S. Sadeghi, and B. Kordi, "An electromagnetic model of lightning return stroke channel using electric field integral equation in time domain," Engineering Analysis with Boundary Elements, Vol. 27, 305-314, 2003.
doi:10.1016/S0955-7997(02)00118-2

23. Gardner, R. L., Lightning Electromagnetics, Hemisphere Publishing, New York, 1990.

24. Visacro, S. and A. De Conti, "A distributed-circuit return-stroke model allowing time and height parameter variation to match lightning electromagnetic field waveform signatures," Geophysical Research Letters, Vol. 32, 2005.

25. Mattos, M. A. F. and C. Christopoulos, "A model of the lightning channel, including corona, and prediction of the generated electromagnetic fields," Journal of Physics D: Applied Physics, Vol. 23, 40, 1990.
doi:10.1088/0022-3727/23/1/007

26. Gomes, C. and V. Cooray, "Concepts of lightning return stroke models," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, 82-96, 2000.
doi:10.1109/15.831708

27. Cooray, V., "On the concepts used in return stroke models applied in engineering practice," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 101-108, 2003.
doi:10.1109/TEMC.2002.808041

28. Cooray, V. and V. Rakov, "A current generation type return stroke model that predicts the return stroke velocity," Journal of Lightning Research, Vol. 1, 32-39, 2007.

29. Cooray, V., The Lightning Flash, IET Press, 2003.

30. Rakov, V. and M. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, 403-426, 1998.
doi:10.1109/15.736202

31. Diendorfer, G. and M. Uman, "An improved return stroke model with specified channel-base current," Journal of Geophysical Research --- Atmospheres, Vol. 95, 13621-13644, 1990.
doi:10.1029/JD095iD09p13621

32. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "Analytical expressions for electromagnetic fields associated with the inclined lightning channels in the time domain ," Electric Power Components and Systems, Vol. 40, 414-438, 2012.
doi:10.1080/15325008.2011.639130

33. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic ¯elds at intermediate distances from lightning channel," Progress In Electromagnetic Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801

34. Izadi, M., M. Z. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods ," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

35. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "Numerical expressions in time domain for electromagnetic fields due to lightning channels ," International Journal of Applied Electromagnetics and Mechanics, Vol. 37, 275-289, 2011.

36. Kreyszig, E., Advanced Engineering Mathematics, Wiley-India, 2007.

37. Sadiku, M. N. O., Numerical Technique in Electromagnetics, CRC Press, LLC, 2001.

38. Lee, Y.-G., "Electric field discontinuity-considered effective-permittivities and integration-tensors for the three-dimensional finite-difference time-domain method ," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
doi:10.2528/PIER11060304

39. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, 1st Ed., Wiley Chichester, UK, 2005.

40. Clerc, M., Particle Swarm Optimization, Wiley-ISTE, 2006.

41. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969

42. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

43. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO ," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105

44. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO ," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806

45. Li, Y., S. Sun, F. Yang, and L. J. Jiang, "Design of dual-band slotted patch hybrid couplers based on PSO algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2409-2419, 2011.
doi:10.1163/156939311798806220

46. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced Particle Swarm Optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303

47. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1998, 2011.
doi:10.1163/156939311798071965