Vol. 26
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-30
Zero-Dispersion Shifted Optical Fiber Design Based on GA and Cd Optimization Methods
By
Progress In Electromagnetics Research M, Vol. 26, 115-126, 2012
Abstract
In this paper, the RII depressed core triple clad based structure as Zero-dispersion Shifted optical fiber is optimized to obtain small pulse broadening factor (small dispersion and its slope) and low bending loss suitable for long haul communications. The proposed structures allow reducing the dispersion, its slope and the bending loss. The Genetic Algorithm (GA) and the Coordinate Descent (CD) technique are used for the optimization. The suggested design approach involves a special cost function which includes dispersion, its slope, and bending loss impacts. The proposed algorithm and structure have inherent potential to obtain large effective area and extend tolerance of bending loss simultaneously. Meanwhile, an analytical method is used to calculate the dispersion and its slope. In the meantime, the thermal stabilities of the designed structures are evaluated.
Citation
Somaye Makouei, and Zia Koozekanani, "Zero-Dispersion Shifted Optical Fiber Design Based on GA and Cd Optimization Methods," Progress In Electromagnetics Research M, Vol. 26, 115-126, 2012.
doi:10.2528/PIERM12060101
References

1. Savadi Oskouei, M., S. Makouei, A. Rostami, and Z. D. Koozeh Kanani, "Proposal for optical fiber designs with ultrahigh effective area and small bending loss applicable to long haul communications," Applied Optics, Vol. 46, No. 25, 6330-6339, 2007.
doi:10.1364/AO.46.006330

2. Rostami, A. and M. Savadi Oskouei, "Investigation of chromatic dispersion and pulse broadening factor of two new multi-clad optical fibers," IJCSNS, Vol. 6, No. 8, 60-68, 2006.

3. Tian, X. and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Optics Communications, Vol. 230, 105-113, 2004.
doi:10.1016/j.optcom.2003.11.037

4. Zhang, X. and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Optics and Laser Technology, Vol. 35, 237-244, 2003.
doi:10.1016/S0030-3992(02)00175-5

5. Rostami, A. and M. Savadi Oskouei, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Optics Communications, Vol. 271, 413-420, 2007.
doi:10.1016/j.optcom.2006.10.072

6. Sakai, J.-I. and T. Kimura, "Bending loss of propagation modes in arbitrary index profile optical fibers," Applied Optics, Vol. 17, No. 10, 1499-1506, 1978.
doi:10.1364/AO.17.001499

7. Ghosh, G., "Temperature dispersion of refractive indexes in some silicate fiber glasses," Photonics Technology Letters,, Vol. 6, No. 3, 431-433, 1994.
doi:10.1109/68.275509

8. Nunes, F. D., C. A. de Souza Melo, and H. F. da Silva Filho, "Theoretical study of coaxial fibers," Applied Optics, Vol. 35, No. 3, 388-399, 1996.
doi:10.1364/AO.35.000388

9. Ghosh, G., "Dispersion of temperature coefficients of birefringence in some chalcopyrite crystal," Applied Optics, Vol. 23, 976-978, 1984.
doi:10.1364/AO.23.000976

10. Tseng, Z. Q., "On the convergence of the coordinate descent method for convex differentiable minimization," Optimization Theory and Applications, Vol. 72, No. 1, 7-35, 1992.
doi:10.1007/BF00939948

11. Varshney, R. K., A. K. Ghatak, I. C. Goyal, and S. Antony, "Design of a flat field fiber with very small dispersion slope," Optical Fiber Technology, Vol. 9, No. 4, 189-198, 2003.
doi:10.1016/S1068-5200(03)00042-7