Vol. 42
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-15
Low Cost 60 GHz New Thin Pyralux Membrane Antennas Fed by Substrate Integrated Waveguide
By
Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012
Abstract
A low cost technology based on FR4 and thin flexible Pyralux substrate to develop membrane antennas/array with high efficiency and wide bandwidth for high speed V-band communication systems is proposed in this paper. A new low cost thin Pyralux substrate with a thickness of 75 μm, relative permittivity of εr = 2.4 and tanδ = 0.002 is used. First we developed the known classical aperture coupled antennas based on FR4 and pyralux substrate to validate this technology. The simulated and measured antenna radiation parameters for a single patch, 1x4 array of patches using aperture coupled technology give good results in terms of S11 bandwidth, gain and radiation pattern. But the back radiation is found to be high due to some radiation from the slot and the feeding microstrip line. Measurements of the antennas show approximately 9.7% and 10.8% impedance bandwidth (S11= -10 dB) with a maximum gain of 7.6 dBi and 12.4 dBi around 60 GHz, respectively. In order to reduce the back radiation, we developed slot coupled antennas with substrate integrated waveguide (SIW) technology. Measurements show a 10 % and 7.5 % impedance bandwidth with a maximum antenna gain of 7.9 dBi and 12.7 dBi around 60 GHz for SIW single patch and 1 x 4 array antenna, respectively. The efficiency in this case is found to be very good due to very low back radiation. The measured results are in good agreement with the numerical simulations. The new thin substrate used for making the antenna helps easy integration with millimeter wave components and circuits.
Citation
Tristan Sarrazin, Hamsakutty Vettikalladi, Olivier Lafond, Mohamed Himdi, and Nathalie Rolland, "Low Cost 60 GHz New Thin Pyralux Membrane Antennas Fed by Substrate Integrated Waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012.
doi:10.2528/PIERB12052508
References

1. Ohmori, S., Y. Yamao, and N. Nakajima, "The future generations of mobile communications based on broadband access technologies," IEEE Communications Magazine, 133-142, Dec. 2000.

2. Nesic, A., D. Nesic, V. Brankovic, K. Sasaki, and K. Kawasaki, "Antenna solution for future communication devices in mm-wave range," Microwave Review, 9-17, Dec. 2001.

3. Smulders, P. F. M., "60 GHz radio: Prospects and future directions," Proceedings Symposium IEEE Benelux Chapter on Communications and Vehicular Technology, 1-8, Eindhoven, 2003.

4. Guo, N., R. C. Qiu, S. S. Mo, and K. Takahashi, "60-GHz millimeter-wave radio: Principle, technology and new results," EURASIP Journal on Wireless Communications and Networking, 1-8, 2007.
doi:10.1155/2007/68253

5. Richardson, A. J. and P. A.Watson, "Use of the 55-65 GHz oxygen absorption band fort short-range broadband radio networks with minimal regulatory control," Proc. Inst. Elect. Eng., Vol. 137, 233-241, Aug. 1990.

6. Montusclat, S., F. Gianesello, and D. Gloria, "Silicon full integrated LNA, filter and antenna system beyond 40 GHz for MMW wireless communication links in advanced CMOS technologies," Proc. IEEE Radio Frequency Integrated Circuits Symp., 77-80, 2006.
doi:10.1109/RFIC.2006.1651095

7. Nakano, H., R. Suga, Y. Hirachi, J. Hirokawa, and M. Ando, "Dipole antenna on a thick resin layer on the back side of a silicon chip at 60 GHz ," Proc. European Microwave Conf., 528-531, Sep. 2009.

8. Tsutsumi, Y., M. Nishio, S. Sekine, H. Shoki, and T. Morooka, "A triangular loop antenna mounted adjacent to a lossy Si substrate for millimeter-wave wireless PAN," Proc. IEEE Antenna Propagat. Symp., 1008-1011, Jun. 2007.
doi:10.1109/APS.2007.4395667

9. Willmot, R., D. Kim, and D. Peroulis, "A Yagi-Uda array of high-efficiency wire-bond antennas for on-chip radio applications," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 3315-3321, 2009.
doi:10.1109/TMTT.2009.2034051

10. Adane, A., F. Gallee, C. Person, V. Puyal, C. Villeneuve, and D. Dragomirescu, "Implementation of broadband microstrip-u coupled patch array on Si/BCB membrane for beamforming applications at 60 GHz ," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011.

11. Sarrazin, T., O. Lafond, M. Himdi, N. Rolland, and L. Roy, "Antenne microstrip alimentée par fente inversée pour l'intégration hétérogène 3D (System-in-Package) en gamme millimhhétique [60 GHz]," JNM, 2011.

12. Neculoiu, D., G. Konstantinidis, L. Bary, A.Muller, D. Vasilache, A. Stavinidris, P. Pons, and R. Plana, "Membrane-supported Yagi-Uda millimeter-wave ntennas," Proc. `EuCAP', Nice, France, Nov. 6-10, 2006; ESA SP-626, Oct. 2006.

13. Neculoiu, D., P. Pons, R. Plana, P. Blondy, A. Muller, and D. Vasilache, "MEMs antennas for millimeterwave applications," MEMS Components and Applications for Industry, Automobiles, Aerospace, and Communication, Proceedings of SPIE, Vol. 4559, Henry Helvajian, Siegfried W. Janson, Franz Lärmer, Ed., 2011.

14. Digby, J. W., C. E. McIntosh, G. M. Parkhurst, J. W. Hadjiloucas, J. M. Chamberlain, R. D. Pollard, R. E. Miles, D. P. Steenson, N. J. Cronin, and S. R. Davies , "Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 8, 1293-1302, Aug. 2000.
doi:10.1109/22.859472

15. McGrath, W., R. C. Walker, M. Yap, and Y. Tai, "Silicon micro-machined waveguides for millimeter-wave and submillimeter-wave frequencies," IEEE Microw. Guided Wave Lett., Vol. 3, No. 3, 61-63, Mar. 1993.
doi:10.1109/75.205665

16. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw Wireless Compon. Lett., Vol. 11, 68-70, Feb. 2001.
doi:10.1109/7260.914305

17. Yan, L., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 9, 446-448, Sep. 2004.
doi:10.1109/LMWC.2004.832081

18. Hong, W., B. Liu, G. Q. Luo, Q. H. Lai, J. F. Xu, Z. C. Hao, F. F. He, and X. X. Yin, "Integrated microwave and millimeter wave antennas based on SIW and HMSIW technology," Proc. IEEE Int. Workshop Antenna Tech. Small Smart Antennas Metamater. and Applicat., (iWAT), 69-72, Mar. 2007.
doi:10.1109/IWAT.2007.370082

19. Nakano, H., R. Suga, Y. Hirachi, J. Hirokawa, and M. Ando, "60-GHz post-wall waveguide aperture antenna with directors made by multilayer PCB process," Proc. EuCAP, Italy, Apr. 11-15, 2011.

20. Stephens, D., P. R. Young, and I. D. Robertson, "W-band substrate integrated waveguide slot antenna," Electron. Lett., Vol. 41, No. 4, 165-167, Feb. 2005.
doi:10.1049/el:20057682

21. Cheng, S., H. Yousef, and H. Kratz, "79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 64-71, Jan. 2009.
doi:10.1109/TAP.2008.2009708

22. , , , http://www2.dupont.com/Pyralux/en US/assets/downloads/pdf/Pyralux TK DataSheet.pdf .
doi:10.1109/LAWP.2011.2168373

23. Abdel-Wahab, W. M. and S. Safavi-Naeini, "Wide-bandwidth 60-GHz aperture-coupled microstrip patch antennas (MPAs) fed by substrate integrated waveguide (SIW) ," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1003-1005, 2011.
doi:10.1049/ip-map:20040726

24. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," Inst. Elect. Eng. Proc., Microwaves, Antennas Propag., Vol. 152, 35-42, 2005.