Vol. 42
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-24
CSRRs for Efficient Reduction of the Electromagnetic Interferences and Mutual Coupling in Microstrip Circuits
By
Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012
Abstract
This paper proposes an efficient microstrip isolator filter which suppresses the surface and lateral waves (SW and LW) in planar antenna arrays. The structure consists in a double or triple row of periodic and flipped array of subwavelength Complementary Split Ring Resonators (CSRRs). The array of CSRRs is etched on a dielectric substrate backed by a metallic ground plane. These structures can both block the electromagnetic (EM) energy in one direction and guide it along the other transverse direction. In particular, the flipped array of CSRRs presents wider bandgap characteristic (stopband ≥20%) than periodic array of CSRRs (~16%) and conventional array of SRRs (≥12%). Then, the metamaterial filter is inserted between two 6.1 GHz probe-fed patch antenna elements separated by a distance of 0.8 λ0. Excellent agreements between the simulated and the experimental results are obtained. In fact, a significant reduction of the EM mutual coupling is achieved, more than 24 dB, over a wide frequency bandwidth. Moreover, the proposed CSRR structures are compact, low complex and, as printed antennas, are very easy to manufacture. They have numerous applications in MIMO systems and directive phased arrays.
Citation
Xiaoke Han, Habiba Hafdallah-Ouslimani, Tao Zhang, and Alain C. Priou, "CSRRs for Efficient Reduction of the Electromagnetic Interferences and Mutual Coupling in Microstrip Circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.
doi:10.2528/PIERB12052406
References

1. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequencyband," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 10, 2059-2074, Nov. 1999.

2. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling redection between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 120, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

3. Yang, F. and Y. R. Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

4. Karnfelt, C., P. Hallbjorner, H. Zirath, and A. Alping, "High gain active microstrip antenna for 60-GHz WLAN/WPAN applications," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 6, 2593-2603, Jun. 2006.
doi:10.1109/TMTT.2006.872923

5. Ohnimus, F., I. Ndip, E. Engin, S. Guttowski, and H. Reichl, "Study on shielding effectiveness of mushroom-type electromagnetic bandgap structures in close proximity to patch antennas," Proc. LAPC, 737-740, Loughborough, UK, 2009.

6. Nikolic, M., A. Djordjevic, and A. Nehorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Trans. on Antennas and Propag., Vol. 53, No. 11, 3469-3476, Nov. 2005.
doi:10.1109/TAP.2005.858847

7. Tan, M. N. M., T. A. Rahman, S. K. A. Rahim, M. T. Ali, and M. F. Jamlos, "Antenna array enhancement using mushroom-like electromagnetic band gap (EBG)," Proc. 4th EuCAP, 1-5, Barcelona, Spain, Apr. 2010.

8. Coulombe, M., S. F. Koodiani, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. on Antennas and Propag., Vol. 58, No. 4, 1076-1086, Apr. 2010.
doi:10.1109/TAP.2010.2041152

9. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. on Antennas and Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983

10. Li, L., B. Li, H. X. Liu, and C. H. Liang, "Locally resonant cavity cell model for electromagnetic band gap structures," IEEE Trans. on Antennas and Propag., Vol. 54, No. 10, 90-100, Jan. 2006.
doi:10.1109/TAP.2005.861532

11. Tang, M.-C., S.-Q. Xiao, S.-S. Gao, G. Jian, and B.-Z. Wang, "Mutual coupling suppressing based on a new type electric resonant SRRs in microstrip array," Acta Phys. Sin., Vol. 59, No. 3, 1851-1856, 2010.

12. Tang, M.-C., S.-Q. Xiao, J. Guan, Y.-Y. Bai, S.-S. Gao, and B.-Z.Wang, "Composite metamaterial enabled excellent performance of microstrip antenna array," Chin. Phys. B,, Vol. 19, No. 7, 074214, 2010.
doi:10.1088/1674-1056/19/7/074214

13. Tang, M.-C., S. Q. Xiao, B. Z. Wang, J. Guan, and T. W. Deng, "Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs," IEEE Antennas and Propagation Magazine, Vol. 53, No. 6, 31-41, Dec. 2011.
doi:10.1109/MAP.2011.6157712

14. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs)," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 862-865, 2011.
doi:10.1109/LAWP.2011.2165931

15. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. on Antennas and Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.
doi:10.1109/TAP.2010.2052560

16. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators ," IEEE Microwave and Wireless Components Letters, Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

17. Abdalla, M. A., M. A. Fouad, H. A. Elregeily, and A. A. Mitkees, "Wideband negative permittivity metamaterial for size reduction of stopband filter in antenna applications," Progress In Electromagnetics Research C, Vol. 25, 55-66, 2012.
doi:10.2528/PIERC11082509

18. Khan, S. N., X. G. Liu, L. X. Shao, and Y. Wang, "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105

19. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876, 2010.
doi:10.1109/LAWP.2010.2074175

20. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Artificial complementary resonators for mutual coupling reduction in microstrip antennas ," Proceedings of the 41st European Microwave Conference, EuMA, 10-13, Manchester, UK, Oct. 2011.

21. Lu, H. M., J. X. Zhao, and Z. Y. Yu, "Design and analysis of a novel electromagnetic bandgap structure for suppressing simultaneous switching noise," Progress In Electromagnetics Research C, Vol. 30, 81-91, 2012.

22. Bitzer, A., A. Ortner, H. Merbold, T. Feurer, and M. Walther, "Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle," Optics Express, Vol. 19, No. 3, 2537, Optical Society of America, OSA, Jan. 31, 2011.
doi:10.1364/OE.19.002537

23. Baena, J. D., J. Bonache, F. MartÍn, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. GarcÍa, I. Gil, M. F. Portillo, and M. Sorol, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211

24. Tran, C.-M., H. Hafdallah-Ouslimani, L. Zhou, A. C. Priou, H. Teillet, J.-Y. Daden, and A. Ourir, "High impedance surfaces based antennas for high data rate communications at 40 GHz," Progress In Electromagnetic Research C, Vol. 13, 217-299, 2010.
doi:10.2528/PIERC10040404

25. Ouslimani, H. H., X. Han, and T. Zhang, "Analysis and reduction of electromagnetic coupling interferences in microstrip antenna arrays," Advanced Electromagnetics Symposium, AES, 16-18, Paris, France, Apr. 2012.

26. , , , http://www.ansys.com/Products/Simulation+Technology/Elect-romagnetics/High-Performance+Electronic+Design/ANSYS+H-FSS.

27. , , , http://www.cst.com/content/products/mws/overview.aspx.

28. , , , RT/duroid 6006/6010 Dada sheet: http://www.rogerscorp.com/documents/612/acm/RT-duroid-6006-6010-laminate-data-sheet.aspx..