Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-24
Compact Lowpass Filter with High Selectivity Using g -Shaped Defected Microstrip Structure
By
Progress In Electromagnetics Research Letters, Vol. 33, 55-62, 2012
Abstract
In this paper, a novel G-shaped defected microstrip structure (DMS) is presented. Compared with the conventional DMS, the proposed G-shaped DMS exhibits lower resonant frequency and wider stopband. A lowpass filter with 3 dB cutoff frequency at 3.17 GHz using four pairs of parallel cascaded G-shaped DMS units is designed and fabricated. The measured results show that the transition band is only 0.09 GHz and the stopband over 25 dB attenuation covers 3.4 GHz to 10 GHz.The measured and simulated results are in good agreement.
Citation
Hailin Cao, Wei Guan, Sijia He, and Lisheng Yang, "Compact Lowpass Filter with High Selectivity Using g -Shaped Defected Microstrip Structure," Progress In Electromagnetics Research Letters, Vol. 33, 55-62, 2012.
doi:10.2528/PIERL12051412
References

1. Lu, K., G.-M. Wang, Y.-W. Wang, and X. Yin, "An improved design of hi-lo microstrip lowpass filter using uniplanar double spiral resonant cells," Progress In Electromagnetics Research Letters, Vol. 23, 89-98, 2011.

2. Wu, Y., Y. Liu, S. Li, and C. Yu, "A new wide-stopband low-pass filter with generalized coupled-line circuit and analytical theory," Progress In Electromagnetics Research, Vol. 116, 553-567, 2011.

3. Yang, M. H., J. Xu, Q. Zhao, L. Peng, and G. P. Li, "Compact, broad-stopband lowpass filters using SIRs-loaded circular hairpin resonators," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901

4. Mohra, A. S., "Compact lowpass filter with sharp transition band based on defected ground structures," Progress In Electromagnetics Research Letters, Vol. 8, 83-92, 2009.
doi:10.2528/PIERL09041406

5. Xi, D., Y.-Z. Yin, L.-H. Wen, Y. Mo, and Y. Wang, "A compact lowpass filter with sharp cutoff and low insertion loss characteristic using novel defected ground structures," Progress In Electromagnetics Research Letters, Vol. 17, 133-143, 2010.
doi:10.2528/PIERL10062501

6. Al Sharkawy, M. H., D. Abd El-Aziz, and E. G. Mahmoud, "A miniaturized lowpass/bandpass filter using double arrow head defected ground structure with centered etched ellipse ," Progress In Electromagnetics Research Letters, Vol. 24, 99-107, 2011.

7. Wei, F., L. Chen, Q.-Y. Wu, X.-W. Shi, and C.-J. Gao, "Compact UWB bandpass filter with narrow notch-band and wide stop-band," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 911-920, 2010.
doi:10.1163/156939310791285155

8. Fallahzadeh, S. and M. Tayarani, "A new microstrip UWB bandpass filter using defected microstrip structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 893-902, 2010.
doi:10.1163/156939310791285254

9. Shen, W., W.-Y. Yin, and X.-W. Sun, "Compact microstrip tri-section bandpass filters with mixed couplings," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1807-1816, 2010.

10. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
doi:10.1163/156939310793675808

11. Tirado-Mendez, J. A., H. Jardón-Aguilar, F. Iturbide-Sánchez, I. Garcia-Ruiz, V. Molina-Lopez, and R. Acevo-Herrera, "A proposed defected microstrip structure (DMS) behavior for reducing rectangular patch antenna size," Microw. Opt. Technol. Lett., Vol. 43, 481-484, Oct. 2004.

12. Zhang, S., J.-K. Xiao, and Y. Li, "Novel microstrip band-stop ¯lters based on complementary split ring resonators," Microw. J., Vol. 49, 100-112.

13. Naser-Moghadasi, M., M. Alamolhoda, and B. Rahmati, "Harmonics blocking in hairpin filter using defected microstrip structure," IEICE Electronics Express, Vol. 8, 629-635, May 2011.
doi:10.1587/elex.8.629

14. Liu, H. W., Z. C. Zhang, S. Wang, L. Zhu, X. H. Guan, J. S. Lim, and D. Ahn, "Compact dual-band bandpass filter using defected microstrip structure for GPS and WLAN applications," Electronic Letter, Vol. 46, No. 21, 1444-1445, Oct. 2011.
doi:10.1049/el.2010.2146

15. La, D. S., Y. H. Lu, S. Y. Sun, N. Liu, and J. L. Zhang, "A novel compact bandstop filter using defected microstrip structure," Microw. Opt. Technol. Lett., Vol. 53, 433-435, Feb. 2011.
doi:10.1002/mop.25708

16. Xie, H. H., Y. C. Jiao, B.Wang, and F. S. Zhang, "DMS structures stop bandpass filter harmonics," Microwave & RF, Vol. 50, 72-76, Sept. 2011.

17. Xiao, J. K., W. J. Zhu, and J. S. Fu, "New bandstop filter using simple defected microstrip structure," Microw. J., Vol. 54, 134-144, Sept. 2011.

18. Xiao, J.-K. and W.-J. Zhu, "New defected microstrip structure bandstop filter," PIERS Proceedings, 1471-1474, Suzhou, China, Sept. 12-16, 2011.

19. Li, X. and H. Wang, "Analysis and application of shunt open stubs based on asymmetric half-wavelength resonators structure," Progress In Electromagnetics Research, Vol. 125, 311-325, 2012.
doi:10.2528/PIER12010302