Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-20
A Dual-Band Metamaterial Absorber Based with Resonant-Magnetic Structures
By
Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012
Abstract
In this paper, we present a new type of a double-negative metamaterial (MTM) absorber based with resonant-magnetic structures, with a periodic array composed of a split-ring resonator (SRR) and two open complementary split-ring resonators (OCSRRs). In contrast to common absorber configurations, the absorber proposed in this paper does not use a metallic back plate or a resistive sheet. In order to eliminate the need for this metallic back plate, a planar array of SRRs is placed parallel to the incident wave propagation direction. An appropriately designed combination structure of two OCSRRs and a SRR exhibits negative permittivity and negative permeability in the same frequency band. Each unit cell is printed on both sides of an FR-4 substrate. A prototype absorber was fabricated with a planar array of 75 × 42 unit cells. Both simulations and experiments verify the effectiveness of the proposed backplane-less MTM absorber. The proposed backplane-less absorber can be used for microwave applications.
Citation
Hong-Min Lee, and Hyungsup Lee, "A Dual-Band Metamaterial Absorber Based with Resonant-Magnetic Structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.
doi:10.2528/PIERL12050110
References

1. Fnate, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag., Vol. 30, 1443-1454, 1968.

2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., 274021-274024, 2008.

3. Tao, H., N. I. Landy, C. M. Bingham, X. Zang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization ," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181

4. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Microwave Opt. Tech. Lett., Vol. 52, 877-880, 2010.
doi:10.1002/mop.25068

5. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys. D, Vol. 43, 225102-225106, 2010.
doi:10.1088/0022-3727/43/22/225102

6. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

7. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770

8. Cheng, Y., H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," J. Appl. Phys. A, Vol. 102, 99-103, 2010.

9. Alici, K. B., F. Bilotti, L. Vegni, and E. Ozbay, "Experimental verification of metamaterial based subwavelength microwave absorbers ," J. Appl. Phys., Vol. 108, 0831131-0831136, 2010.
doi:10.1063/1.3493736

10. Velez, A., F. Aznar, J. Bonache, J. M. Velazquez-Ahumada, and F. Martin, "Open complimentary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters ," IEEE Microwave & Wirel. Compon. Lett., Vol. 19, 197-199, 2009.
doi:10.1109/LMWC.2009.2015490

11. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439

12. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain technique," IEEE Trans. on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

13. Depine, R. A. and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Tech. Lett., Vol. 41, 315-316, 2004.
doi:10.1002/mop.20127