Vol. 41
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-06-11
All-Dielectric Frequency Selective Surfaces with Few Number of Periods
By
Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012
Abstract
All-dielectric frequency selective surfaces (FSSs) can serve as an alternative to their metallic counterparts when they must operate at very high power, loss must be minimized, or when the surface itself must be low observable. When metals are avoided, there is a weaker interaction with electromagnetic waves and it becomes more difficult to achieve strong suppression in the stop band while also realizing compact size, wide field-of-view or broadband operation. One attractive approach utilizes guided-mode resonance (GMR) as the filtering mechanism, but this phenomenon exhibits several drawbacks that must be overcome for practical application at radio frequencies. This paper introduces the concept of guide-mode resonance for FSSs and describes how they can be made to operate with a dramatically fewer number of periods than conventional GMR devices.
Citation
Jay H. Barton, Raymond C. Rumpf, Randall W. Smith, Carrie L. Kozikowski, and Phillip A. Zellner, "All-Dielectric Frequency Selective Surfaces with Few Number of Periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.
doi:10.2528/PIERB12042404
References

1. Marconi, G. and C. S. Franklin, "Reflector for use in wireless telegraphy and telephony," US Patent 1,301,473, April 1919.

2. Munk, B. A., R. G. Kouyoumjian, and L. Peters, "Reflection properties of periodic surfaces of loaded dipoles," IEEE Trans. on Ant. and Prop., Vol. 19, No. 5, 612-617, 1971.
doi:10.1109/TAP.1971.1139995

3. Munk, B., Frequency Selective Surfaces: Theory and Design, Wiley, 2005.

4. Marouby, E., J. R. Levrel, B. Bougerolles, J. Lenormand, and C. Terret, "On the use of frequency selective surfaces in stealth techniques for aerospace applications," 24th European Microwave Conference, Vol. 1, 585-589, 1994.
doi:10.1109/EUMA.1994.337273

5. Genovesi, S. and A. Monorchio, "Low profile array with reduced radar cross section," IEEE URSI International Symposium on Electromagnetic Theory, 799-802, 2010.
doi:10.1109/URSI-EMTS.2010.5637228

6. Lee, S.-W., "Scattering by dielectric-loaded screen," IEEE Trans. on Ant. and Prop., Vol. 19, No. 5, 656-665, 1971.
doi:10.1109/TAP.1971.1140010

7. Pelton, E. L. and B. A. Munk, "A streamlined metallic radome," IEEE Trans. on Ant. and Prop., Vol. 22, No. 6, 799-803, 1974.
doi:10.1109/TAP.1974.1140896

8. Raynes, D. L. and J. Delap, "Design of finite array with radome incorporating a frequency selective surface," IEEE 2nd European Conference on Antennas and Propagation, 1-5, 2007.

9. Agahi, S. and R. Mittra, "Design of a cascaded frequency selective surface as a dichroic subreflector," Antennas and Propagation Society International Symposium, 88-91, 1990.

10. Pozar, D. M., "Flat lens antenna concept using aperture coupled microstrip patches," Electronics Letters, Vol. 32, No. 23, 2109-2111, 1996.
doi:10.1049/el:19961451

11. Jalaly, I. and I. D. Robertson, "RF barcodes using multiple frequency bands," IEEE MTT-S International Microwave Symposium Digest, 139-142, 2005.
doi:10.1109/MWSYM.2005.1516542

12. Wang, L. B., K. Y. See, J. W. Zhang, A. C. W. Lu, and S. T. Ng, "Full-wave modeling and analysis of screen printed EMI shield," IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 1348-1351, 2010.

13. Pugh, S., "Using FSS in HPM applications," MS Thesis, Air Force Institute of Technology, 2010.

14. Magnusson, R. and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett., Vol. 61, No. 9, 1022-1024, 1992.
doi:10.1063/1.107703

15. Tibuleac, S. and R. Magnusson, "Reflection and transmission guided-mode resonance filters," J. Opt. Soc. Am A, Vol. 14, No. 7, 1617-1626, 1997.
doi:10.1364/JOSAA.14.001617

16. Boonruang, S., A. Greenwell, and M. G. Moharam, "Multiline two-dimensional guided-mode resonant filters," Appl. Opt., Vol. 45, No. 22, 5740-5747, 2006.
doi:10.1364/AO.45.005740

17. Boyce, R. R. and R. K. Kostuk, "Investigation of the effect of finite grating size on the performance of guided-mode resonance filters," Appl. Opt., Vol. 39, No. 21, 3649-3653, 2000.
doi:10.1364/AO.39.003649

18. Magnusson, R. and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express, Vol. 16, No. 5, 3456-3462, 2008.
doi:10.1364/OE.16.003456

19. Rayleigh, L., "Proc. R. Soc. Lond. A,", Vol. 79, 399-416, 1907.

20. Rumpf, R. C., "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," Ph.D. Thesis, University of Central Florida, 236, 2006.

21. Balanis, C., Advanced Engineering Electromagnetics, 323-325, 1989.

22. Hao, J. and L. Zhou, "Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4x4 transfer-matrix method," Phys. Rev. B, Vol. 77, 094201, 2008.

23. Grann, E. B., M. G. Moharam, and D. A. Pommet, "Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," J. Opt. Soc. Am. A, Vol. 11, No. 10, 2695-2703, 1994.
doi:10.1364/JOSAA.11.002695

24. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

25. Magnusson, R. and S. S. Wang, "New principle for optical fiters," Appl. Phys. Lett., Vol. 61, No. 9, 60-84, 1992.
doi:10.1063/1.107703