Vol. 25
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-19
Patterned Resistive Strip Loading for Edge Scattering Suppression of a Finite Wedge
By
Progress In Electromagnetics Research M, Vol. 25, 27-38, 2012
Abstract
Tapered resistive strip realized by patterning the constant resistive strip is used to suppress edge scattering of a finite wedge. The suppression effect is simulated and evaluated by the reduction in mono-static RCS (Radar Cross Section). This reduction is compared with the one which loaded by the ideal tapered resistive strip. The result indicating that patterning a constant resistive strip to create a gradient in sheet resistance is feasible. To verify this method of fabricating tapered resistive strip, patterned resistive strip with a proper gradient in sheet resistance is conducted and loaded on the wedge target for test. The gradient in sheet resistance used for test is obtained from the optimization. Resistive strip with this sheet resistance gradient renders a promising effect of edge scattering suppression. The test result shows a reduction of 20dB for the geometric mean of mono-static RCS in the angular range of 45º. This value is close to the one of 23dB in simulation.
Citation
Zhi-Wei Zhu, Haiyan Chen, Hui-Bin Zhang, Pei-Heng Zhou, Long-Jiang Deng, and Jianliang Xie, "Patterned Resistive Strip Loading for Edge Scattering Suppression of a Finite Wedge," Progress In Electromagnetics Research M, Vol. 25, 27-38, 2012.
doi:10.2528/PIERM12042303
References

1. Gomez-Sousa, H., J. A. Martinez-Lorenzo, and O. Rubinos-Lopez, "Three-dimensional wedge diffraction correction deduced by the stationary phase method on the modified equivalent current approximation (MECA)," Progress In Electromagnetics Research M, Vol. 23, 207-227, 2012.
doi:10.2528/PIERM11111808

2. Zhu, N. Y. and M. A. Lyalinov, "Diffraction by a wedge or by a cone with impedance-type boundary conditions and second-order functional difference equations," Progress In Electromagnetics Research B, Vol. 6, 239-256, 2008.
doi:10.2528/PIERB08031205

3. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

4. Pesque, J. J., D. P. Bouche, and R. Mittra, "Optimization of multilayer antireflection coating using an optimal control method," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 9, Sep. 1992.
doi:10.1109/22.156606

5. Terracher, F. and G. Berginc, "A broadband dielectric microwave absorber with periodic metallizations," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1725-1741, 1999.
doi:10.1163/156939399X00187

6. Chen, H.-Y., L.-J. Deng, and P.-H. Zhou, "Suppression of surface wave from finite conducting surfaces with impedance loading at margins," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1977-1989, 2010.

7. Kempel, L. C. and J. L. Volakis, "TM scattering by a metallic half plane with a resistive sheet extension," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 7, 910-917, Jul. 1993.
doi:10.1109/8.237622

8. Rothwell, E. J., M. J. Havrilla, and S. Dorey, "An improved physical optics formulation for scattering by a thin resistive strip," Electromagnetics, Vol. 30, No. 5, 403-418, Jun. 28, 2010.
doi:10.1080/02726343.2010.483372

9. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, E. Babolian, and Z. Masouri, "Numerical approach to survey the problem of electromagnetic scattering from resistive strips based on using a set of orthogonal basis functions," Progress In Electromagnetics Research, Vol. 81, 393-412, 2008.
doi:10.2528/PIER08012502

10. Umul, Y. Z. and U. Yalcin, "Diffraction theory of waves by resistive surfaces," Progress In Electromagnetics Research B, Vol. 23, 1-13, 2010.
doi:10.2528/PIERB10060205

11. Senior, T. B. A., "Backscattering from resistive strips," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 6, 808-813, Nov. 1979.
doi:10.1109/TAP.1979.1142189

12. Senior, T. B. A., "Scattering by resistive strips," Radio Science, Vol. 14, No. 5, 911-924, Sep. 1979.
doi:10.1029/RS014i005p00911

13. Senior, T. B. A. and V. V. Liepa, "Backscattering from tapered resistive strips," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 7, 747-751, Jul. 1984.
doi:10.1109/TAP.1984.1143403

14. Rojas, R. G. and M. Otero, "EM diffraction by a resistive strip attached to an impedance wedge," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 3, 373-402, Jan. 1, 1993.
doi:10.1163/156939393X00714

15. Otero, M. F. and R. G. Rojas, "Resistive treatment to reduce edge diffraction from large wedge-shaped objects and planar antennas," Radio Science, Vol. 32, No. 5, 1745-1759, Sep. 1997.
doi:10.1029/97RS00710

16. Sjoberg, D. and M. Gustafsson, "Realization of a matching region between a radome and a ground plane," Progress In Electromagnetics Research Letters, Vol. 17, 1-10, 2010.
doi:10.2528/PIERL10071906

17. Kuester, E. and D. Chang, "Scattering of a surface wave from a curvature discontinuity on a convex impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 796-801, Nov. 1977.
doi:10.1109/TAP.1977.1141692

18. Sadasiva, M. R., D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transac- tions on Antennas and Propagation, Vol. 30, No. 3, May 1982.

19. Chen, H. Y., L. J. Deng, P. H. Zhou, and J. L. Xie, "Tapered impedance loading for suppression of edge scattering," Microwave, Antennas and Propagation, IET, Vol. 5, No. 14, 1744-1749, Nov. 22, 2011.
doi:10.1049/iet-map.2010.0623

20. Chen, H. Y., "Study on Scattering Mechanisms and RCS Reduction of Electromagnetic Discontinuities,", Ph.D. dissertation, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, ChengDu, China, 2011.
doi:10.1049/iet-map.2010.0623

21. Sjoberg, D., "Analysis of wave propagation in stratified structures using circuit analogs, with application to electromagnetic absorbers," Eur. J. Phys., Vol. 29, 721-734, 2008.
doi:10.1088/0143-0807/29/4/007