Vol. 32
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-19
A Compact Multimode Bandpass Filter with Extended Stopband Bandwidth
By
Progress In Electromagnetics Research Letters, Vol. 32, 177-186, 2012
Abstract
A compact multimode bandpass filter with low insertion loss, high stopband rejection and wide stopband bandwidth is introduced by using cascaded multimode resonators and compact loading cells in combination. The measured minimum insertion loss is of 1.7dB including the connector loss in the input and output ports in the passband of 5.7~8 GHz. Through the use of cascaded multimode resonators, steep skirt selectivity and wide stopband up to 18 GHz can be achieved. When incorporated with the lowpass loading cells, which have elliptical low-pass response by using the source-load coupling, the stopband of the proposed filter can be further extended up to 40 GHz, with only negligible influence on the passband performance.
Citation
Kaixue Ma, Shouxian Mou, Keping Wang, and Kiat Seng Yeo, "A Compact Multimode Bandpass Filter with Extended Stopband Bandwidth," Progress In Electromagnetics Research Letters, Vol. 32, 177-186, 2012.
doi:10.2528/PIERL12042201
References

1. Chiou, Y.-C. and J.-T. Kuo, "Planar multiband bandpass filter with multimode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 129-144, 2011.

2. Huang, X.-G., Q.-Y. Feng, and Q.-Y. Xiang, "High selectivity broadband bandpass filter using stub-loaded quadruple-mode ," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 1, 34-43, 2012.
doi:10.1163/156939312798954892

3. Wang, L. and B.-R. Guan, "Compact and high selectivity dual-band bandpass filter using nested dual-mode defected ground structure resonators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 4, 549-559, 2012.

4. Lee, J. R., J. H. Cho, and S. W. Yun, "New compact bandpass filter using microstrip λ/4 resonators with open stub inverter," IEEE Microwave and Guided Wave Letters, Vol. 10, 526-527, Dec. 2000.

5. Mondal, P. and M. K. Mandal, "Design of dual-band bandpass filters using stub-loaded open-loop resonators," IEEE Trans. Microwave Theory Tech., Vol. 56, 150-155, Jan. 2008.
doi:10.1109/TMTT.2007.912204

6. Kuo, Y. T., "Analytical design of two-mode dual-band filters using E-shaped resonators," IEEE Trans. Microwave Theory Tech., Vol. 60, 250-260, Feb. 2012.
doi:10.1109/TMTT.2011.2176506

7. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619

8. Sagawa, M., K. Takahashi, and M. Makimoto, "Miniaturized hairpin resonator filters and their application to receiver front-," IEEE Trans. Microwave Theory Tech., Vol. 37, 1991-1996, Dec. 1989.
doi:10.1109/22.44113

9. Ma, K., K. S. Yeo, J.-G. Ma, and M. A. Do, "An ultra-compact hairpin band pass filter with additional zero points," IEEE Microwave and Wireless Components Lett., Vol. 17, 262-264, Apr. 2007.
doi:10.1109/LMWC.2007.892955

10. Ma, K., J.-G. Ma, K. S. Yeo, and M. A. Do, "A compact size coupling controllable filter with separated electric and magnetic coupling paths," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 3, 1113-1119, Mar. 2006.
doi:10.1109/TMTT.2005.864118

11. Awai, I., A. C. Kundu, and T. Yamashita, "Equivalent-circuit representation and explanation of attenuation poles of a multimode dielectric-resonator bandpass filter," IEEE Trans. Microwave Theory Tech., Vol. 46, 2159-2163, Dec. 1998.
doi:10.1109/22.739300

12. Zhu, L., P. Wecowski, and K. Wu, "New planar multimode filter using cross-slotted patch resonator for simultaneous size and loss reduction," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 5, 650-654, May 1999.
doi:10.1109/22.763171

13. Hong, J.-S. and M. J. Lancaster, "Microstrip triangular patch resonator filters," IEEE MTT-S Int. Symp. Dig., 331-334, 2000.

14. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Lett., Vol. 15, No. 11, 796-798, Nov. 2005.

15. Ma, K., K. C. B. Leong, R. M. Jayasuriya, and K. S. Yeo, "A wideband and high rejection multimode bandpass filter using stub perturbation," IEEE Microwave and Wireless Components Lett., Vol. 19, 24-26, Jan. 2009.

16. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microwave and Wireless Components Lett., Vol. 17, No. 2, 121-123, Feb. 2007.
doi:10.1109/LMWC.2006.890335

17. Hsieh, L.-H. and K. Chang, "Compact elliptic-function low-pass ¯lters using microstrip stepped-impedance hairpin resonators," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 1, 193-199, Jan. 2003.
doi:10.1109/TMTT.2002.806901

18. Bastioli, S., C. Tomassoni, and R. Sorrentino, "A new class of waveguide dual-mode filters using TM and nonresonating," IEEE Trans. Microwave Theory and Tech., Vol. 58, No. 12, 3909-3917, Dec. 2010.