Vol. 25
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-19
Electric-Field Distributions of Dielectric Single Layers of Spheres with Different Compactness
By
Progress In Electromagnetics Research M, Vol. 25, 13-26, 2012
Abstract
The internal electric-field distribution from single layers of dielectric spheres with high refractive index (n=2.65) has been analyzed for a number of different compactness cases by FDTD (Finite-Difference Time-Domain) method. The field distributions from the transmission spectra were compared with the internal electric-field distribution of the Mie modes of an isolated sphere. In general, the agreement is very good in almost all cases studied. The results show that TE and TM Mie modes are the origin of the resonances in the transmission spectra of the single layers. The resonances of the monolayer attributed to TE11 and TM11 Mie modes are only excited for compactness values lower than 0.38, suggesting a dependence of periodical arrangement effects for these modes. Moreover, the field distribution corresponding to some of the dips in the spectrum cannot be directly attributed to Mie modes (TE21). The result indicates these are formed by degenerated or weakly coupled Mie modes induced by the periodic structure.
Citation
Angel Andueza, Paola Morales, and Joaquín Sevilla, "Electric-Field Distributions of Dielectric Single Layers of Spheres with Different Compactness," Progress In Electromagnetics Research M, Vol. 25, 13-26, 2012.
doi:10.2528/PIERM12042012
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Cristal, Molding the Flow of Light, Princeton University Press, New Yersey, 2005.

4. Soukoulis, C. M., Photonic Band Gap Materialst, Kluwer Academic Publishers, Dordrecht, 1996.
doi:10.1007/978-94-009-1665-4

5. Miyazaki, H. and K. Ohtaka, "Near-field images of a monolayer of periodically arrayed dielectric spheres," Phys. Rev. B, Vol. 58, No. 11, 6920-6937, 1998.
doi:10.1103/PhysRevB.58.6920

6. Kondo, T., S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, "Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres," Phys. Rev. B, Vol. 70, No. 23, 1-6, 2004.

7. Kondo, T., M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, "Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy," Phys. Rev. B, Vol. 3, 331111-331114, 2002.

8. Kurokawa, Y., Y. Jimba, and H. Miyazaki, "Optical band structure and near-fieldintensity of a periodically arrayed monolayer of dielectric spheres on dielectric substrate of finite thickness," Phys. Rev. B, Vol. 70, No. 15, 1551171-1551179, 2004.
doi:10.1103/PhysRevB.70.155107

9. Kurokawa, Y., Y. Jimba, and H. Miyazaki, "Internal electric-field intensity distribution of a monolayer of periodically arrayed dielectric spheres," Phys. Rev. B, Vol. 70, No. 15, 1550171-1550175, 2004.
doi:10.1103/PhysRevB.70.155107

10. Kurokawa, Y., H. Miyazaki, and Y. Jimba, "Light scattering from a monolayer of periodically arrayed dielectric spheres on dielectric substrates," Phys. Rev. B, Vol. 65, No. 20, 2011021-2011024, 2002.
doi:10.1103/PhysRevB.65.201102

11. Kurokawa, Y., H. Miyazaki, H. T. Miyazaki, and Y. Jimba, "Effect of a semi-infinite substrate on the internal electric field intensity distribution of a monolayer of periodically arrayed dielectric spheres," J. Phys. Soc. Jpn., Vol. 74, No. 3, 924-929, 2005.
doi:10.1143/JPSJ.74.924

12. Miyazaki, H. T., H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys., Vol. 87, No. 10, 7152-7158, 2000.
doi:10.1063/1.372962

13. Ohtaka, K., "Scattering theory of low-energy photon diffraction," J. Phys. C, Vol. 13, No. 4, 667-680, 1980.
doi:10.1088/0022-3719/13/4/022

14. Ohtaka, K., "Energy band of photons and low-energy photon diffraction," Phys. Rev. B, Vol. 19, No. 10, 5057-5067, 1979.
doi:10.1103/PhysRevB.19.5057

15. Ohtaka, K. and M. Inoue, "Light scattering from macroscopic spherical bodies. I. Integrated density of states of transverse electromagnetic fields," Phys. Rev. B, Vol. 25, No. 2, 677-688, 1982.
doi:10.1103/PhysRevB.25.677

16. Ohtaka, K., S. Suda, T. Nagano, A. Ueta, T. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B, Vol. 61, No. 8, 5267-5279, 2000.
doi:10.1103/PhysRevB.61.5267

17. Ohtaka, K. and Y. Tanabe, "Photonic band using vector spherical waves. I. Various properties of bloch electric fields and heavy photons," J. Phys. Soc. Jpn., Vol. 65, No. 7, 2265-2275, 1996.
doi:10.1143/JPSJ.65.2265

18. Ohtaka, K. and Y. Tanabe, "Photonic bands using vector spherical waves. II. Reflectivity, coherence and local field," J. Phys. Soc. Jpn., Vol. 65, No. 7, 2276-2284, 1996.
doi:10.1143/JPSJ.65.2276

19. Ohtaka, K. and Y. Tanabe, "Photonic bands using vector spherical waves. III. Group-theoretical treatment," J. Phys. Soc. Jpn., Vol. 65, No. 8, 2670-2284, 1996.
doi:10.1143/JPSJ.65.2670

20. Sainidou, R., N. Stefanou, I. E. Psarobas, and A. Modinos, "Scattering of elastic waves by a periodic monolayer of spheres," Phys. Rev. B, Vol. 66, No. 2, 243031-243037, 2002.
doi:10.1103/PhysRevB.66.024303

21. Yano, S., Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, "Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres," Phys. Rev. B, Vol. 66, No. 7, 751191-751197, 2002.
doi:10.1103/PhysRevB.66.075119

22. Andueza, A., R. Echeverria, and J. Sevilla, "Evolution of the electromagnetic modes of a single layer of dielectric spheres with compactness," J. Appl. Phys., Vol. 104, No. 4, 043103, 2008.

23. Andueza, A. and J. Sevilla, "Non compact single-layers of dielectric spheres electromagnetic behaviour," Opt. Quantum Electron., Vol. 39, No. 4-6, 311-320, 2007.
doi:10.1007/s11082-007-9091-7

24. Andueza, A., R. Echeverria, P. Morales, and J. Sevilla, "Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness," J. Appl. Phys., Vol. 107, No. 12, 124902, 2010.

25. Andueza, A., T. Smet, P. Morales, and J. Sevilla, "Disorder effect in the transmission spectra of a noncompact single layer of dielectric spheres derived from microwave spectroscopy," Appl. Opt., Vol. 50, No. 31, 91-97, 2011.
doi:10.1364/AO.50.000G91

26. Andueza, A., P. Morales, and J. Sevilla, "Photonic band effect in single-layers of high refractive index spheres of different compactness," J. Appl. Phys., Vol. 111, No. 10, 104902, 2012.

27. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.

28. Lidorikis, E., M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, "Tight-binding parametrization for photonic band gap materials," Phys. Rev. Lett., Vol. 81, No. 7, 1405-1408, 1998.
doi:10.1103/PhysRevLett.81.1405

29. Shalin, A. S., "Optical antireflection of a medium by nanostructural layers," Progress In Electromagnetics Research B, Vol. 31, 45-66, 2011.

30. Mie, G., "Die optischen eigenschaften kolloider goldlsungen," Zeitschrift fur Chemie und Industrie der Kolloide, Vol. 2, No. 5, 129-133, 1907.
doi:10.1007/BF01503334

31. Bohrem, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particules, Wiley, New York, 1995.