Vol. 32
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-05-30
Non-Destructive Evaluation of Concrete Structures by Non-Stationary Thermal Wave Imaging
By
Progress In Electromagnetics Research Letters, Vol. 32, 39-48, 2012
Abstract
Reinforced concrete structures (RCS) have potential application in civil engineering and with the advent of nuclear engineering RCS to be capable enough to withstanding a variety of adverse environmental conditions. However, failures/loss of durability of designed structures due to premature reinforcement corrosion of rebar is a major constrain. Growing concern of safety of structure due to pre-mature deterioration has led to a great demand for development of non-destructive and non-contact testing techniques for monitoring and assessing health of RCS. This paper presents an experimental investigation of rebar corrosion by non-stationary thermal wave imaging. Experimental results have been proven, proposed approach is an effective technique for identification of corrosion in rebar in the concrete samples.
Citation
Ravibabu Mulaveesala, Soma Sekhara Balaji Panda, Rupla Naik Mude, and Muniyappa Amarnath, "Non-Destructive Evaluation of Concrete Structures by Non-Stationary Thermal Wave Imaging," Progress In Electromagnetics Research Letters, Vol. 32, 39-48, 2012.
doi:10.2528/PIERL12042005
References

1. Maldague, X. P. V., "Theory and Practice of Infrared Thermography for Non-destructive Testing," Wiley-Interscience Publishers, 2001.

2. Maldague, X. and S. Marinetti, "Pulse phase infrared thermography," Journal of Applied Physics, Vol. 79, No. 5, 2694-2698, 1996.
doi:10.1063/1.362662

3. Busse, G., D. Wu, and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," Journal of Applied Physics, Vol. 71, No. 8, 3962-3965, 1992.
doi:10.1063/1.351366

4. Maierhofer, C., A. Brink, M. Rollig, and H. Wiggenhauser, "Quantitative impulse-thermogra phy as non-destructive testing method in civil engineering-experimental results and numerical simulations," Construction and Building Materials, Vol. 19, 731-737, 2005.
doi:10.1016/j.conbuildmat.2005.06.002

5. Vavilov, V. and X. P. V. Maldague, "Optimisation of heating protocol in thermal NDT, short and long heating pulses: A discussion," Res Non-Destruct Evaluat., Vol. 6, 1-17, 1994.
doi:10.1080/09349849409409677

6. Dumoulin, J., J. Ibos, C. Ibarra-Castanedo, A. Mazioud, M. Marchetti, X. Maldague, and A. Bendada, "Active infrared thermography applied to defect detection and characterization on asphalt pavement samples: Comparison between experiments and numerical simulations," Journal of Modern Optics, Vol. 57, No. 18, 1759-1769, 2010.
doi:10.1080/09500340.2010.522738

7. Mulaveesala, R. and S. Tuli, "Digitized frequency modulated thermal wave imaging for nondestructive testing," Materials Evaluation, Vol. 63, No. 10, 1046-1050, 2005.

8. Mulaveesala, R. and S. Tuli, "Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection," Applied Physics Letters, Vol. 89, No. 19, 191913, 2006.
doi:10.1063/1.2382738

9. Mulaveesala, R., P. Pal, and S. Tuli, "Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging," Sensors and Actuators, A: Physical, Vol. 128, No. 1, 209-216, 2006.
doi:10.1016/j.sna.2006.01.004

10. Mulaveesala, R. and S. Tuli, "Infrared non-destructive characterization of boiler tube," Sensor Letters, Vol. 6, No. 2, 312-318, 2008.
doi:10.1166/sl.2008.039

11. Mulaveesala, R., J. S. Vaddi, and P. Singh, "Pulse compression approach to infrared nondestructive characterization," Review of Scientific Instruments, Vol. 79, No. 9, 094901, 2008.
doi:10.1063/1.2976673

12. Ghali, V. S., N. Jonnalagadda, and R. Mulaveesala, "Three-dimensional pulse compression for infrared nondestructive testing," IEEE Sensors Journal, Vol. 9, No. 7, 832-833, 2009.
doi:10.1109/JSEN.2009.2024042

13. Ghali, V. S. and R. Mulaveesala, "Frequency modulated thermal wave imaging techniques for non-destructive testing," Insight: Non-destructive Testing and Condition Monitoring, Vol. 52, No. 9, 475-480, 2010.
doi:10.1784/insi.2010.52.9.475

14. Mulaveesala, R. and V. S. Ghali, "Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics," Review of Scientific Instruments, Vol. 82, No. 5, 054902, 2011.
doi:10.1063/1.3594551

15. Ghali , V. S., R. Mulaveesala, and M. Takei, "Frequency-modulated thermal wave imaging for non-destructive testing of carbon fiber-reinforced plastic materials," Measurement Science and Technology, Vol. 22, No. 10, 104018, 2011.
doi:10.1088/0957-0233/22/10/104018

16. Ghali, V. S., S. S. B. Panda, and R. Mulaveesala, "Barker coded thermal wave imaging for defect detection in carbon fbre-reinforced plastics," Insight: Non-Destructive Testing and Condition Monitoring, Vol. 53, No. 11, 621-624, 2011.
doi:10.1784/insi.2011.53.11.621

17. Ghali, V. S. and R. Mulaveesala, "Comparative data processing approaches for thermal wave imaging techniques for non-destructive testing," Sensing and Imaging, Vol. 12, No. 1-2, 15-33, 2011.
doi:10.1007/s11220-011-0059-0

18. Mulaveesala, R., "Frequency modulated thermal wave imaging: Theory, modelling, simulation and applications,", Ph.D. dissertation, Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi, New Delhi, India, 2006.