1. Kelly, K. L., et al. "The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, Vol. 107, No. 3, 668-677, 2003.
doi:10.1021/jp026731y
2. Liaw, J.-W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865
3. Muhlschlegel, P., et al. "Resonant optical antennas," Science, Vol. 308, No. 5728, 1607-1609, 2005.
doi:10.1126/science.1111886
4. Xie, H., F. M. Kong, and K. Li, "THE electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 534-547, 2009.
doi:10.1163/156939309787612419
5. Rand, B. P., P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," Journal of Applied Physics, Vol. 96, No. 12, 7519-7526, 2004.
doi:10.1063/1.1812589
6. Huang, X. H., et al. "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," Journal of the American Chemical Society, Vol. 128, No. 6, 2115-2120, 2006.
doi:10.1021/ja057254a
7. Yavuz, M. S., et al. "Gold nanocages covered by smart polymers for controlled release with near-infrared light," Nature Materials, Vol. 8, No. 12, 935-939, 2009.
doi:10.1038/nmat2564
8. Jain, P. K., et al. "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," Journal of Physical Chemistry B, Vol. 110, No. 14, 7238-7248, 2006.
doi:10.1021/jp057170o
9. Anker, J. N., et al. "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162
10. Jain, P. K., et al. "Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging sensing, biology, and medicine," Accounts of Chemical Research, Vol. 41, No. 12, 1578-1586, 2008.
doi:10.1021/ar7002804
11. Noguez, C., "Surface plasmons on metal nanoparticles: The influence of shpae and physical environment," Journal of Physical Chemistry C, Vol. 111, No. 10, 3806-3819, 2007.
doi:10.1021/jp066539m
12. Sau, T. K., et al. "Properties and applications of colloidal nonspherical noble metal nanoparticles," Advanced Materials, Vol. 22, No. 16, 1805-1825, 2010.
doi:10.1002/adma.200902557
13. Millstone, J. E., et al. "Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms," Journal of the American Chemical Society, Vol. 127, No. 15, 5312-5313, 2005.
doi:10.1021/ja043245a
14. Millstone, J. E., G. S. Metraux, and C. A. Mirkin, "Controlling the edge length of gold nanoprisms via a seed-mediated approach," Advanced Functional Materials, Vol. 16, No. 9, 1209-1214, 2006.
doi:10.1002/adfm.200600066
15. Aherne, D., et al. "Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature," Advanced Functional Materials, Vol. 18, No. 14, 2005-2016, 2008.
doi:10.1002/adfm.200800233
16. Haes, A. J., et al. "Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," Journal of Physical Chemistry B,, Vol. 108, No. 22, 6961-6968, 2004.
doi:10.1021/jp036261n
17. Hao, E. and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," Journal of Chemical Physics, Vol. 120, No. 1, 357-366, 2004.
doi:10.1063/1.1629280
18. Nelayah, J., et al. "Mapping surface plasmons on a single metallic nanoparticle," Nature Physics, Vol. 3, No. 5, 348-353, 2007.
doi:10.1038/nphys575
19. Aherne, D., et al. "From Ag nanoprisms to triangular AuAg nanoboxes," Advanced Functional Materials, Vol. 20, No. 8, 1329-1338, 2010.
doi:10.1002/adfm.200902030
20. Tong, L., et al. "Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity," Angewandte Chemie International Edition, Vol. 49, No. 20, 3485-3488, 2010.
doi:10.1002/anie.201000440
21. Chen, J. Y., et al. "Gold nanocages: Engineering their structure for biomedical applications," Advanced Materials, Vol. 17, No. 18, 2255-2261, 2005.
doi:10.1002/adma.200500833
22. Kudelski, A., "Influence of electrostatically bound proteins on the structure of linkage monolayers: Adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate," Vibrational Spectroscopy, Vol. 33, No. 1-2, 197-204, 2003.
doi:10.1016/j.vibspec.2003.09.003
23. Qian, X. M., et al. "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nature Biotechnology, Vol. 26, No. 1, 83-90, 2008.
doi:10.1038/nbt1377
24. Link, S., Z. Wang, and M. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," The Journal of Physical Chemistry B, Vol. 103, No. 18, 3529-3533, 1999.
doi:10.1021/jp990387w
25. Hu, M., et al. "Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy," Journal of Physical Chemistry B, Vol. 110, No. 40, 19923-19928, 2006.
doi:10.1021/jp0621068
26. Metraux, G. S., et al. "Triangular nanoframes made of gold and silver," Nano Letters, Vol. 3, No. 4, 519-522, 2003.
doi:10.1021/nl034097+
27. Palik, E. D. (ed.), Handbook of Optical Constants of Solids, Academic Press, New York, 1998.
28. Jiang, L., et al. "Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells," Analytical and Bioanalytical Chemistry, Vol. 400, No. 9, 2793-2800, 2011.
doi:10.1007/s00216-011-4894-6
29. Qian, J., et al. "Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging," Biomaterials, Vol. 32, No. 6, 1601-1610, 2011.
doi:10.1016/j.biomaterials.2010.10.058
30. Li, X., J. Qian, and S. He, "Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing," Nanotechnology, Vol. 19, 355501, 2008.
31. Neuberger, T., et al. "Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system," Journal of Magnetism and Magnetic Materials, Vol. 293, No. 1, 483-496, 2005.
doi:10.1016/j.jmmm.2005.01.064
32. Gupta, A. K. and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomate-rials, Vol. 26, No. 18, 3995-4021, 2005.
doi:10.1016/j.biomaterials.2004.10.012
33. Lu, W., et al. "Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection," Cancer Research, Vol. 70, No. 8, 3177-3188, 2010.
doi:10.1158/0008-5472.CAN-09-3379
34. Link, S., et al. "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," Journal of Physical Chemistry A, Vol. 103, No. 9, 1165-1170, 1999.
doi:10.1021/jp983141k
35. Kamat, P. V., M. Flumiani, and G. V. Hartland, "Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation," Journal of Physical Chemistry B, Vol. 102, No. 17, 3123-3128, 1998.
doi:10.1021/jp980009b
36. Kurita, H., A. Takami, and S. Koda, "Size reduction of gold particles in aqueous solution by pulsed laser irradiation," Applied Physics Letters, Vol. 72, No. 7, 789-791, 1998.
doi:10.1063/1.120894
37. Inasawa, S., M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," Journal of Physical Chemistry B, Vol. 109, No. 8, 3104-3111, 2005.
doi:10.1021/jp045167j
38. Plech, A., et al. "Femtosecond laser near-field ablation from gold nanoparticles," Nature Physics, Vol. 2, No. 1, 44-47, 2006.
doi:10.1038/nphys191
39. Wheeler, D. A., et al. "Optical properties and persistent spectral hole burning of near infrared-absorbing hollow gold nanospheres," Journal of Physical Chemistry C, Vol. 114, No. 42, 18126-18133, 2010.
doi:10.1021/jp1076824