Vol. 128
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-15
Surface Plasmon Properties of Hollow Auag Alloyed Triangular Nanoboxes and Its Applications in Sers Imaging and Potential Drug Delivery
By
Progress In Electromagnetics Research, Vol. 128, 35-53, 2012
Abstract
We successfully synthesized hollow AuAg alloyed triangular nanoboxes (TNBs) with localized surface plasmon resonances (LSPR) spectra position from visible to NIR region. We then study the surface plasmon properties of AuAg alloyed TNBs and explore their application in surface enhanced Raman scattering (SERS) imaging. We also investigated the laser induced near-field ablation of TNBs, which have the potentials of drug delivery for cancer treatment. Finite Difference Time Domain (FDTD) method is used to calculate electromagnetic fields induced by optical excitation of LSPR of AuAg alloyed TNBs for the first time. The calculated results are proved through in-vivo SERS imaging by three types of SERS tags based on TNBs. Furthermore, the unique hollow structure of TNBs may facilitate direct encapsulation of anticancer drugs, without any surface coatings. The femtosecond laser near-field ablation experiment is studied as one possible method to release the drug encapsulated inside the hollow structure. These studies show that the nanostructures are easy to break down and promising as a nanodevice model for controlled drug delivery.
Citation
XinWei Liu, Jiao Lin, Tian Feng Jiang, Zhen Feng Zhu, Qiuqiang Zhan, Jun Qian, and Sailing He, "Surface Plasmon Properties of Hollow Auag Alloyed Triangular Nanoboxes and Its Applications in Sers Imaging and Potential Drug Delivery," Progress In Electromagnetics Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER12041908
References

1. Kelly, K. L., et al. "The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, Vol. 107, No. 3, 668-677, 2003.
doi:10.1021/jp026731y

2. Liaw, J.-W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

3. Muhlschlegel, P., et al. "Resonant optical antennas," Science, Vol. 308, No. 5728, 1607-1609, 2005.
doi:10.1126/science.1111886

4. Xie, H., F. M. Kong, and K. Li, "THE electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 534-547, 2009.
doi:10.1163/156939309787612419

5. Rand, B. P., P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," Journal of Applied Physics, Vol. 96, No. 12, 7519-7526, 2004.
doi:10.1063/1.1812589

6. Huang, X. H., et al. "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," Journal of the American Chemical Society, Vol. 128, No. 6, 2115-2120, 2006.
doi:10.1021/ja057254a

7. Yavuz, M. S., et al. "Gold nanocages covered by smart polymers for controlled release with near-infrared light," Nature Materials, Vol. 8, No. 12, 935-939, 2009.
doi:10.1038/nmat2564

8. Jain, P. K., et al. "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," Journal of Physical Chemistry B, Vol. 110, No. 14, 7238-7248, 2006.
doi:10.1021/jp057170o

9. Anker, J. N., et al. "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, No. 6, 442-453, 2008.
doi:10.1038/nmat2162

10. Jain, P. K., et al. "Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging sensing, biology, and medicine," Accounts of Chemical Research, Vol. 41, No. 12, 1578-1586, 2008.
doi:10.1021/ar7002804

11. Noguez, C., "Surface plasmons on metal nanoparticles: The influence of shpae and physical environment," Journal of Physical Chemistry C, Vol. 111, No. 10, 3806-3819, 2007.
doi:10.1021/jp066539m

12. Sau, T. K., et al. "Properties and applications of colloidal nonspherical noble metal nanoparticles," Advanced Materials, Vol. 22, No. 16, 1805-1825, 2010.
doi:10.1002/adma.200902557

13. Millstone, J. E., et al. "Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms," Journal of the American Chemical Society, Vol. 127, No. 15, 5312-5313, 2005.
doi:10.1021/ja043245a

14. Millstone, J. E., G. S. Metraux, and C. A. Mirkin, "Controlling the edge length of gold nanoprisms via a seed-mediated approach," Advanced Functional Materials, Vol. 16, No. 9, 1209-1214, 2006.
doi:10.1002/adfm.200600066

15. Aherne, D., et al. "Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature," Advanced Functional Materials, Vol. 18, No. 14, 2005-2016, 2008.
doi:10.1002/adfm.200800233

16. Haes, A. J., et al. "Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," Journal of Physical Chemistry B,, Vol. 108, No. 22, 6961-6968, 2004.
doi:10.1021/jp036261n

17. Hao, E. and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," Journal of Chemical Physics, Vol. 120, No. 1, 357-366, 2004.
doi:10.1063/1.1629280

18. Nelayah, J., et al. "Mapping surface plasmons on a single metallic nanoparticle," Nature Physics, Vol. 3, No. 5, 348-353, 2007.
doi:10.1038/nphys575

19. Aherne, D., et al. "From Ag nanoprisms to triangular AuAg nanoboxes," Advanced Functional Materials, Vol. 20, No. 8, 1329-1338, 2010.
doi:10.1002/adfm.200902030

20. Tong, L., et al. "Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity," Angewandte Chemie International Edition, Vol. 49, No. 20, 3485-3488, 2010.
doi:10.1002/anie.201000440

21. Chen, J. Y., et al. "Gold nanocages: Engineering their structure for biomedical applications," Advanced Materials, Vol. 17, No. 18, 2255-2261, 2005.
doi:10.1002/adma.200500833

22. Kudelski, A., "Influence of electrostatically bound proteins on the structure of linkage monolayers: Adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate," Vibrational Spectroscopy, Vol. 33, No. 1-2, 197-204, 2003.
doi:10.1016/j.vibspec.2003.09.003

23. Qian, X. M., et al. "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nature Biotechnology, Vol. 26, No. 1, 83-90, 2008.
doi:10.1038/nbt1377

24. Link, S., Z. Wang, and M. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," The Journal of Physical Chemistry B, Vol. 103, No. 18, 3529-3533, 1999.
doi:10.1021/jp990387w

25. Hu, M., et al. "Optical properties of Au-Ag nanoboxes studied by single nanoparticle spectroscopy," Journal of Physical Chemistry B, Vol. 110, No. 40, 19923-19928, 2006.
doi:10.1021/jp0621068

26. Metraux, G. S., et al. "Triangular nanoframes made of gold and silver," Nano Letters, Vol. 3, No. 4, 519-522, 2003.
doi:10.1021/nl034097+

27. Palik, E. D. (ed.), Handbook of Optical Constants of Solids, Academic Press, New York, 1998.

28. Jiang, L., et al. "Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells," Analytical and Bioanalytical Chemistry, Vol. 400, No. 9, 2793-2800, 2011.
doi:10.1007/s00216-011-4894-6

29. Qian, J., et al. "Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging," Biomaterials, Vol. 32, No. 6, 1601-1610, 2011.
doi:10.1016/j.biomaterials.2010.10.058

30. Li, X., J. Qian, and S. He, "Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing," Nanotechnology, Vol. 19, 355501, 2008.

31. Neuberger, T., et al. "Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system," Journal of Magnetism and Magnetic Materials, Vol. 293, No. 1, 483-496, 2005.
doi:10.1016/j.jmmm.2005.01.064

32. Gupta, A. K. and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications," Biomate-rials, Vol. 26, No. 18, 3995-4021, 2005.
doi:10.1016/j.biomaterials.2004.10.012

33. Lu, W., et al. "Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection," Cancer Research, Vol. 70, No. 8, 3177-3188, 2010.
doi:10.1158/0008-5472.CAN-09-3379

34. Link, S., et al. "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," Journal of Physical Chemistry A, Vol. 103, No. 9, 1165-1170, 1999.
doi:10.1021/jp983141k

35. Kamat, P. V., M. Flumiani, and G. V. Hartland, "Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation," Journal of Physical Chemistry B, Vol. 102, No. 17, 3123-3128, 1998.
doi:10.1021/jp980009b

36. Kurita, H., A. Takami, and S. Koda, "Size reduction of gold particles in aqueous solution by pulsed laser irradiation," Applied Physics Letters, Vol. 72, No. 7, 789-791, 1998.
doi:10.1063/1.120894

37. Inasawa, S., M. Sugiyama, and Y. Yamaguchi, "Laser-induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," Journal of Physical Chemistry B, Vol. 109, No. 8, 3104-3111, 2005.
doi:10.1021/jp045167j

38. Plech, A., et al. "Femtosecond laser near-field ablation from gold nanoparticles," Nature Physics, Vol. 2, No. 1, 44-47, 2006.
doi:10.1038/nphys191

39. Wheeler, D. A., et al. "Optical properties and persistent spectral hole burning of near infrared-absorbing hollow gold nanospheres," Journal of Physical Chemistry C, Vol. 114, No. 42, 18126-18133, 2010.
doi:10.1021/jp1076824