Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-26
A High Attenuation Electromagnetic Pulse Protector with Gdt, Mov and Parallel Coupled BPF on High Thermal Conductivity Substrates
By
Progress In Electromagnetics Research Letters, Vol. 33, 73-81, 2012
Abstract
An alternative approach for robust electromagnetic pulse (EMP) protection circuit was proposed by using a parallel coupled band-pass filter (BPF) with high thermal conductivity AlN substrate in between with a traditional gas discharge tube (GDT) and fast response metal oxide varistor (MOV). This proposed configuration can suppress slow as well as fast voltage surges. The fabricated BPF with a center frequency of 2.5 GHz on the high thermal conductive (180~200 W/m·K) AlN substrate could efficiently suppress high power over voltage surge. Through the purposed cascade protection configuration, it is observed that 6KV ESD fast introduced pulse (5 ns/50 ns) and 4 KV lightning surge pulse(1 us/50 us) were attenuated to 511V and 396 V, respectively, and that is capable to be applied to an EMP protection circuit in the front end of a linear amplifier applications.
Citation
Ming-Jer Jeng, Atanu Das, Liann-Be Chang, Ching-Chi Lin, Yi-Cherng Ferng, Chien-Fu Shih, Sheng-You Liao, Shu-Tsun Chou, Ji-Chyun Liu, and Lee Chow, "A High Attenuation Electromagnetic Pulse Protector with Gdt, Mov and Parallel Coupled BPF on High Thermal Conductivity Substrates," Progress In Electromagnetics Research Letters, Vol. 33, 73-81, 2012.
doi:10.2528/PIERL12041804
References

1. Radasky, W. A., C. E. Baum, and M. W. Wik, "Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)," IEEE Trans. Electromagn. Compat., Vol. 46, 314-321, 2004.
doi:10.1109/TEMC.2004.831899

2. Giri, D. V. and F. M. Tesche, "Classification of intentional electromagnetic environments (IEME)," IEEE Trans. Electromagn. Compat., Vol. 46, 322-328, 2004.
doi:10.1109/TEMC.2004.831819

3. Greetsai, V. N., A. H. Kozlovsky, V. M. Kuvshinnikov, V. M. Loborev, Y. V. Parfenov, O. A. Tarasov, and L. N. Zdoukhov, "Response of long lines to nuclear high-altitude electromagnetic pulse (HEMP) ," IEEE Trans. Electromagn. Compat., Vol. 40, 348-354, 1998.
doi:10.1109/15.736221

4. Prather, W. D., C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, "Survey of worldwide high-power wideband capabilities," IEEE Trans. Electromagn. Compat., Vol. 46, 335-344, 2004.
doi:10.1109/TEMC.2004.831826

5. Jiang, Z., W. Y. Yin, Q. F. Liu, and S. Zhang, "Transient responses of some antennas under the impact of an intentionally incident high-power electromagnetic pulse ," Progress In Electromagnetics Research, Vol. 105, 365-381, 2010.
doi:10.2528/PIER10040701

6. Zhang, X., J. Yang, Q. Yuan, Z. Wang, and X. Li, "Research on the suppressing behaviour of EMP protection device," 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 318-321, 2011.
doi:10.1109/CSQRWC.2011.6036948

7. Zhu, Y.-Z. and Y.-J. Xie, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetic Research, Vol. 77, 29-41, 2007.
doi:10.2528/PIER07072301

8. Huang, C. L., J. J. Wang, and Y. P. Chang, "Using high permittivity ceramic substrates to design a bandpass filter with open stub ," Microwave Opt. Technol. Lett., Vol. 49, 771-773, 2007.
doi:10.1002/mop.22252

9. Lin, Y. F., C. H. Chen, K. Y. Chen, H. M. Chen, and K. L. Wong, "A miniature dual-mode bandpass filter using Al2O3 substrate," IEEE Microwave Wireless Comp. Lett., Vol. 17, 580-582, 2008.
doi:10.1109/LMWC.2007.901766

10. Liu, J. C., J. W. Wang, A. Das, and L. B. Chang, "Wide band double ring resonator with transmission zeros and resonance using high permittivity aluminum nitride substrate ," Microwave Opt. Technol. Lett., Vol. 51, 2878-2881, 2009.
doi:10.1002/mop.24787

11. Xu, J. F., W. Y. Yin, and J. F. Mao, "Transient thermal analysis of GaN heterojunction transistors for high-power applications," IEEE Microwave Wireless Comp. Lett., Vol. 17, 55-57, 2007.
doi:10.1109/LMWC.2006.887261

12. Xu, J. F., W. Y. Yin, J. F. Mao, and L. W. Li, "Thermal transient response of GaAs FETs under intentional electromagnetic interference (IEMI)," IEEE Trans. Electromagn. Compat., Vol. 50, 340-346, 2008.
doi:10.1109/TEMC.2008.922792

13. Ren, Z., W.-Y. Yin, Y.-B. Shi, and Q. H. Liu, "Thermal accumulation effects on the transient temperature responses in LDMOSFETs under the impact of a periodic electromagnetic pulse (EMP) ," IEEE Trans. Electron. Devices, Vol. 57, 345-352, 2010.
doi:10.1109/TED.2009.2034995

14. Yehoshua, S., High altitude nuclear explosion and EMP protection, at http://www.falconanalytics.com, 2009.

15. Weber, T., R. Krzikalla, and J. L. ter Haseborg, "Linear and nonlinear filters suppressing UWB pulses," IEEE Trans. Electromagn. Compat., Vol. 46, 423-430, 2004.
doi:10.1109/TEMC.2004.831887