Vol. 41
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-06-06
Performance Analysis of STAP Algorithms Based on Fast Sparse Recovery Techniques
By
Progress In Electromagnetics Research B, Vol. 41, 251-268, 2012
Abstract
In the field of space-time adaptive processing (STAP), spare recovery type STAP (SR-STAP) algorithms exploit formulation of the clutter estimation problem in terms of sparse representation of a small number of clutter positions among a much larger number of potential positions in the angle-Doppler plane, and provide an effective approach to suppress the clutter especially in very short snapshots. However, it differs from many situations encountered by other SR application fields in the following ways: (i) it does not require to obtain the exact solution; (ii) it highly requires low-complexity approaches. In this paper, we focus on the performance analysis and parameters setting of STAP algorithms based on five representative fast SR techniques, namely, the compressive sampling matching pursuit, the sparse reconstruction by separable approximation, the fast iterative shrinkage-thresholding algorithm, the focal underdetermined system solution and the smoothed l0 norm method.
Citation
Zhaocheng Yang, Zhen Liu, Xiang Li, and Lei Nie, "Performance Analysis of STAP Algorithms Based on Fast Sparse Recovery Techniques," Progress In Electromagnetics Research B, Vol. 41, 251-268, 2012.
doi:10.2528/PIERB12041104
References

1. Ward, J., "Space-time adaptive processing for airborne radar," Technical Report 1015, MIT Lincoln Laboratory, Lexington, MA, Dec. 1994.

2. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, 2003.

3. Melvin, W. L., "A STAP overview," IEEE Aerosp. Electron. Syst. Mag., Vol. 19, No. 1, 19-35, 2004.
doi:10.1109/MAES.2004.1263229

4. Aïssa , B., M. Barkat, B. Atrouz, M. C. E. Yagoub, and M. A. Habib, "An adaptive reduced rank STAP selection with staggered PRF, effect of array dimensionality," Progress In Electromagnetics Research C, Vol. 6, 37-52, 2009.
doi:10.2528/PIERC08121601

5. Gong, Q. Y. and Z. D. Zhu, "Study STAP algorithm on interference target detect under nonhomogeneous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
doi:10.2528/PIER09101502

6. Maria, S. and J. J. Fuchs, "Application of the global matched filter to STAP data an efficient algorithmic approach," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 14-19, 2006.

7. Selesnick, I. W., S. U. Pillai, K. Y. Li, and B. Himed, "Angle-Doppler processing using sparse regularization," Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2750-2753, 2010.
doi:10.1109/ICASSP.2010.5496219

8. Sun, K., H. Zhang, G. Li, H. Meng, and X. Wang, "A novel STAP algorithm using sparse recovery technique," Proc. IGARSS, 336-339, 2009.

9. Sun, K., H. Meng, Y. Wang, and X. Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Process., Vol. 91, No. 9, 2222-2236, 2011.
doi:10.1016/j.sigpro.2011.04.006

10. Parker, J. T. and L. C. Potter, "A Bayesian perspective on sparse regularization for STAP post-processing," Proc. IEEE Radar Conf, 1471-1475, May 2010.

11. Yang, Z., R. C. de Lamare, and X. Li, "L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar," IEEE Trans. on Signal Process., Vol. 60, No. 2, 674-686, 2012.
doi:10.1109/TSP.2011.2172435

12. Yang, Z., R. C. de Lamare, and X. Li, "Sparsity-aware STAP algorithms for airborne radar based on conjugate gradient techniques," Proc. Sensor Signal Process. for Defence Conf., London, UK, 2011.

13. Yang, Z., R. C. de Lamare, and X. Li, "L1 regularized STAP algorithm with a generalized sidelobe canceler architecture for airborne radar," Proc. IEEE Workshop on Statist. Signal Process., 329-332, 2011.

14. Liu, Y. and Q. Wan, "Total difference based partial sparse LCMV beamformer," Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010.
doi:10.2528/PIERL10092705

15. Zhang, Y., Q. Wan, and A.-M. Huang, "Localization of narrow band sources in the presence of mutual coupling via sparse solution finding," Progress In Electromagnetics Research, Vol. 86, 243-257, 2008.
doi:10.2528/PIER08090703

16. Yang, M. and G. Zhang, "Compressive sensing based parameter estimation for monostatic MIMO noise radar," Progress In Electromagnetics Research Letters, Vol. 30, 133-143, 2012.
doi:10.2528/PIERL12010702

17. Ke, W. and L. Wu, "Sparsity-based multi-target direct positioning algorithm based on joint-sparse recovery," Progress In Electromagnetics Research C, Vol. 27, 99-114, 2012.
doi:10.2528/PIERC11110704

18. Gui, G., N. Zheng, N. Wang, A. Mehbodniya, and F. Adachi, "Compressive estimation of cluster-sparse channels," Progress In Electromagnetics Research C, Vol. 24, 251-263, 2011.
doi:10.2528/PIERC11092005

19. Needell, D. and J. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comp. Harmonic Anal., Vol. 26, 301-321, 2008.

20. Tropp, J. A. and J. Wright, "Computational methods for sparse solution of linear inverse problems," Proc. of IEEE, Vol. 98, No. 6, 948-958, 2010.
doi:10.1109/JPROC.2010.2044010

21. Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. on Signal Process., Vol. 57, No. 7, 2479-2493, 2009.
doi:10.1109/TSP.2009.2016892

22. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542

23. Gorodnitsky, I. F. and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. on Signal Process., Vol. 45, No. 3, 600-616, 1997.
doi:10.1109/78.558475

24. 57, 1, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. on Signal Process., Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606