Vol. 128
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-15
Symmetric Inverse-Based Multilevel Ilu Preconditioning for Solving Dense Complex Non-Hermitian Systems in Electromagnetics
By
Progress In Electromagnetics Research, Vol. 128, 55-74, 2012
Abstract
Boundary element discretizations of exterior Maxwell problems lead to dense complex non-Hermitian systems of linear equations that are difficult to solve from a linear algebra point of view. We show that the recently developed class of inverse-based multilevel incomplete LU factorization has very good potential to precondition these systems effectively. This family of algorithms can produce numerically stable factorizations and exploits efficiently the possible symmetry of the underlying integral formulation. The results are highlighted by calculating the radar-cross-section of a full aircraft, and by a numerical comparison against other standard preconditioners.
Citation
Bruno Carpentieri, and Matthias Bollhöfer, "Symmetric Inverse-Based Multilevel Ilu Preconditioning for Solving Dense Complex Non-Hermitian Systems in Electromagnetics," Progress In Electromagnetics Research, Vol. 128, 55-74, 2012.
doi:10.2528/PIER12041006
References

1. Amestoy, P., T. A. Davis, and I. S. Duff, "Algorithm 837:AMD, an approximate minimum degree ordering algorithm," ACM Transactions on Mathematical Software, Vol. 30, No. 3, 381-388, 2004.
doi:10.1145/1024074.1024081

2. Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd Edition, Society for Industrial and Applied Mathematics,Philadelphia, PA, 1999.
doi:10.1137/1.9780898719604

3. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa,S. Christiansen, and E. Michielssen, "A multiplicative calderon preconditioner for the electric field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788

4. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

5. Bollhöfer, M. and Y. Saad, "Multilevel preconditioners constructed from inverse-based ILUs," SIAM J. Scientific Computing, Vol. 27, No. 5, 1627-1650, 2006.
doi:10.1137/040608374

6. Bollhöfer, M., Y. Saad, and O. Schenk, , ILUPACK --Preconditioning software package, Jun.2011, http://ilupack.tubs.de/.Release 2.4..
doi:10.1137/040608374

7. Bollhöfer, M., Marcus J. Grote, and O. Schenk., "Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media," SIAM J. Scientific Computing, Vol. 31, No. 5, 3781-3805, 2009.
doi:10.1137/080725702

8. Bruno, O., T. Elling, R. Paffenroth, and C. Turc, "Electromagnetic integral equations requiring small numbers of krylov-subspace iterations," J. Comput. Phys., Vol. 228, 6169-6183, Sep. 2009.
doi:10.1016/j.jcp.2009.05.020

9. Carpentieri, B., "Algebraic preconditioners for the fast multipole method in electromagnetic scattering analysis from large structures: Trends and problems," Electronic Journal of Boundary Element, Vol. 7, No. 1, 13-49, 2009.

10. Carpentieri, B., I. S. Duff, L. Giraud, and M. Magolu Monga Made, "Sparse symmetric preconditioners for dense linear systems in electromagnetism," Numerical Linear Algebra with Applications,, Vol. 11, No. 8-9, 753-771, 2004.
doi:10.1002/nla.345

11. Carpentieri, B., I. S. Duff, L. Giraud, and G. Sylvand, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM J. Scientific Computing, Vol. 27, No. 3, 774-792, 2005.
doi:10.1137/040603917

12. Carpentieri, B., Y.-F. Jing, and T.-Z. Huang, "The BiCOR and CORS algorithms for solving nonsymmetric linear systems SIAM J. Scientific Computing,", Vol. 33, No. 5, 3020-3036, 2011.
doi:10.1137/100794031

13. Chen, K., Matrix Preconditioning Techniques and Applications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511543258

14. Chew, W. C. and K. F. Warnick, "On the spectrum of the electric field integral equation and the convergence of the moment method," Int J. Numerical Methods in Engineering, Vol. 51, 475-489, 2001.

15. Cui, Z., Y. Han, and M. Li, "Solution of CFIE-JMCFIE using parallel MoM for scattering by dielectrically coated conducting bodies," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 211-222, 2011.
doi:10.1163/156939311794362876

16. Cuthill, E. and J. McKee, "Reducing the bandwidth of sparse symmetric matrices," Proc. 24th National Conference of the Association for Computing Machinery, 157-172, Brandon Press,New Jersey, 1969.

17. Duff, I. S. and J. Koster, "The design and use of algorithms for permuting large entries to the diagonal of sparse matrices," SIAM J. Matrix Analysis and Applications, Vol. 20, No. 4, 889-901, 1999.
doi:10.1137/S0895479897317661

18. Duff, I. S. and S. Pralet, "Strategies for scaling and pivoting for sparse symmetric indefinite problems," SIAM J. Matrix Analysis and Applications, Vol. 27, No. 2, 313-340, 2005.
doi:10.1137/04061043X

19. Durdos, R., "Krylov solvers for large symmetric dense complex linear systems in electromagnetism: Some numerical experiments," Working Notes WN/PA/02/97, CERFACS, Toulouse, France, 2002.

20. Ergül, Ö and L. Gürel, "Effcient solutions of metamaterial problems using a low-frequency Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104

21. Ergül, Ö, T. Malas, and L. Gürel, "Solutions of largescale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate Multilevel Fast Multipole Algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711

22. Freund, R. W., "Conjugate gradient-type methods for linear systems with complex symmetric coeffcient matrices," SIAM J. Scientific and Statistical Computing,, Vol. 13, No. 1, 425-448, 1992.
doi:10.1137/0913023

23. George, J. and J. W. H. Liu, "The evolution of the minimum degree ordering algorithm," SIAM Review, Vol. 31, 1-19, 1989.
doi:10.1137/1031001

24. Gürel, L. and T. Malas, "Iterative near-field preconditioner for the Multilevel Fast Multipole Algorithm," SIAM J. Scientific Computing, Vol. 32, 1929-1949, 2010.
doi:10.1137/09076101X

25. Hackbush, W., "A sparse matrix arithmetic based on H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015

26. Jing, Y.-F., B. Carpentieri, and T.-Z. Huang, "Experiments with Lanczos biconjugate a-orthonormalization methods for MoM discretizations of Maxwell's equations," Progress In Electromagnetics Research, Vol. 99, 427-451, 2009.
doi:10.2528/PIER09101901

27. Karypis, G. and V. Kumar, "Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices version 4.0,", http://glaros.dtc.umn.edu/gkhome/views/metis, University of Minnesota, Department of Computer Science/Army HPC Research Center Minneapolis, MN 55455, 1998.

28. Lai, B., H.-B. Yuan, and C.-H. Liang, "Analysis of Nurbs surfaces modeled geometries with higher-order MoM based AIM," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 683-691, 2011.
doi:10.1163/156939311794827285

29. Lim, H. and N.-H. Myung, "A novel hybrid Aipo-MoM technique for jet engine modulation analysis," Progress In Electromagnetics Research, Vol. 104, 85-97, 2010.
doi:10.2528/PIER10033103

30. Malas, T. and L. Gürel, "Incomplete LU preconditioning with Multilevel Fast Multipole Algorithm for electromagnetic scattering," SIAM J. Scientific Computing, Vol. 29, No. 4, 1476-1494, 2007.
doi:10.1137/060659107

31. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An effcient high order Multilevel Fast Multipole Algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203

32. Pan, X.-M., W.-C. Pi, and X.-Q. Sheng, "On OpenMP parallelization of the Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research, Vol. 112, 199-213, 2011.

33. Pan, X. M. and X. Q. Sheng, "An effcient parallel SAI preconditioner for multilevel fast multipole algorithm for scattering by extremely large complex targets," Int. Conf. Microw. Millim. Wave. Tech., 407-410, 2009.

34. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. on Antennas and Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

35. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comp. Phys., Vol. 86, No. 2, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

36. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM Publications, 2003.
doi:10.1137/1.9780898718003

37. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Scientific and Statistical Computing, Vol. 7, 856-869, 1986.

38. Su, J., X.-W. Xu, and B. Hu, "Hybrid PMM-MoM method for the analysis of finite periodic structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 267-282, 2011.
doi:10.1163/156939311794362867

39. Wang, W. and N. Nishimura, "Calculation of shape derivatives with periodic Fast Multipole Method with application to shape optimization of metamaterials," Progress In Electromagnetics Research, Vol. 127, 49-64, 2012.
doi:10.2528/PIER12013109

40. Yan, S., J.-M. Jin, and Z. Nie, "Calderon preconditioning techniques for integral equation based methods," URSI Interna tional Symposium on Electromagnetic Theory (EMTS), 130-133, Aug. 2010.
doi:10.1109/URSI-EMTS.2010.5637125

41. Zhao, X.-W., Y. Zhang, H.-W. Zhang, D. Garcia-Donoro, S.-W. Ting, T. K. Sarkar, and C.-H. Liang, "Parallel MoM-PO method with out-of-core technique for analysis of complex arrays on electrically large platforms," Progress In Electromagnetics Research, Vol. 108, 1-21, 2010.
doi:10.2528/PIER10072108