Vol. 32
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-12
Design and Implementation of a Practical Direction Finding Receiver
By
Progress In Electromagnetics Research Letters, Vol. 32, 157-167, 2012
Abstract
This paper presents a practical direction finding receiver based on six-port networks. To expand beam direction angles, improve measurement accuracy, and avoid phase ambiguity, we introduce a dual-baseline architecture into the direction finding receiver. We also propose a calibration technique based on support vector regression (SVR) for the following reasons: The nonlinearity of diode detectors and the asymmetry of six-port junctions can cause measurement phase errors. Moreover, the transmission parameters of two microwave channels differ with changes in received power. Results show that the SVR model can achieve a direction finding accuracy of 0.2932°.
Citation
Hao Peng, Ziqiang Yang, and Tao Yang, "Design and Implementation of a Practical Direction Finding Receiver," Progress In Electromagnetics Research Letters, Vol. 32, 157-167, 2012.
doi:10.2528/PIERL12040504
References

1. FaIk, J., P. Handel, and M. Jansson, "Effects of frequency and phase errors in electronic warfare TDOA direction-finding systems," Military Communications Conference, MILCOM, Boston, United States, Oct. 2003.

2. Peng, H., Z. Yang, and T. Yang, "Calibration of a six-port receiver for direction finding using the artificial neural network technique," Progress In Electromagnetics Research Letters, Vol. 27, 17-24, 2011.
doi:10.2528/PIERL11081504

3. Huyart, B., J.-J. Laurin, R. G. Bosisio, and D. Roscoe, "A direction-finding antenna system using an integrated six-port circuit," IEEE Trans. Antennas Propagation, Vol. 43, No. 12, 1508-1512, Dec. 1995.
doi:10.1109/8.475948

4. Yakabe, T., F. Xiao, K. Iwamoto, F. M. Ghannouchi, K. Fujii, and H. Yabe, "Six-port based wave-correlator with application to beam direction finding," IEEE Trans. Instrum. Meas., Vol. 50, No. 2, 377-380, Apr. 2001.
doi:10.1109/19.918146

5. Vinci, G., A. Koelpin, and R. Weigel, "Employing six-port technology for phase-measurement-based calibration of automotive radar," Microwave Conference, APMC.

6. Liu, Y., "Calibrating an industrial microwave six-port instrument using the artificial neural network technique," IEEE Trans. Instrum. Meas., Vol. 45, No. 2, 651-656, Apr. 1996.
doi:10.1109/19.492804

7. Li, X., Y. Li, and J. Zhao, "Ann-based pad modeling technique for mosfet devices," Progress In Electromagnetics Research, Vol. 118, 303-319, 2011.
doi:10.2528/PIER11042702

8. Yang, Z. Q., T. Yang, and Y. Liu, "Design of microstrip lange coupler based on EM-ANN model," International Journal of Infrared and Millimeter Waves, Vol. 27, 1381-1389, 2006.

9. Chen, K., C. Ho, and H. Shiau, "Application of support vector regression in forecasting international tourism demand," Tourism Management Research, Vol. 4, 81-97, 2004.

10. Yang, Z. Q., T. Yang, Y. Liu, and S. H. Han, "MIM capacitor modeling by support vector regression," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 61-67, 2008.
doi:10.1163/156939308783122788

11. Wei, C., J. O. Chong, and S. S. Keerthi, "An improved conjugate gradient scheme to the solution of least squares SVM," IEEE Trans. Neural Network, Vol. 6, 498-501, Mar. 2005.

12. Xia, L., R. Xu, and B. Yan, "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, 67-75, 2007.
doi:10.2528/PIER06120503

13. Peng, H., Z. Yang, and T. Yang, "Calibration of a six-port position sensor via support vector regression," Progress In Electromagnetics Research C, Vol. 26, 71-81, 2012.
doi:10.2528/PIERC11101707

14. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

15. Zheng, W., X. G. Zuo, Y. K. Ma, and Z. S. Hou, "Algorithm of multi-baseline interferometer phase difference in fuzzy circumstance," International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, Apr. 2011.

16. Cicolani, M. and F. Marchetti, "Phase and amplitude automatic measurements on pulsed RF signals," Twenty-second European Microwave Conference, Helsinki, Finland, Sept. 1992.

17. Vapnik , V., "The Nature of Statistical Learning Theory," Springer-Verlag, 1995.

18. Chang, C. C. and C. J. Lin, "LIBSVM: A library for support vector machines,", System documentation, National Taiwan University, 2004.

19. Bengio, Y. and Y. Grandvalet, "No unbiased estimator of the variance of K-fold cross-validation," J. Machine Learning Research, Vol. 5, 1089-1105, 2004.