Vol. 128
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-12
Comprehensive Analysis of Lenz Effect on the Artificial Heart Valves During Magnetic Resonance Imaging
By
Progress In Electromagnetics Research, Vol. 128, 1-17, 2012
Abstract
This work presents results of a comprehensive analysis of the Lenz effect due to motion of artificial heart valves during magnetic resonance imaging. The interaction of rotating metallic heart valves with magnetic fields is studied by performing a time-domain analysis of the corresponding electromagnetic problem. We applied the finite element method (FEM) to solve the T-Ω formulation of Maxwell equations in two cases: first, for metallic disks located in the high intensity homogenous field of the magnet iso-center, and second, disks located in the non-uniform fringe field of the bore entrance. We showed that for valves with full solid disks (such as Starr-Edwards 6500) located in the magnet iso-center, the magnitude of adverse forces can be comparable to the forces applied by the beating heart. However, for rings which consist of multiply connected conductive regions, skin effect and proximity effect counteract, which leads to a diminished magnetic force. Results of this study show that mechanical heart valves with strengthening rings {may} be considered safe even under ultra-high imaging conditions with field intensities as high as 10 T. However, heart valves with full conducting disks should be considered as a contraindication to MR imaging.
Citation
Laleh Golestanirad, Emad Dlala, Graham Wright, Juan Mosig, and Simon J. Graham, "Comprehensive Analysis of Lenz Effect on the Artificial Heart Valves During Magnetic Resonance Imaging," Progress In Electromagnetics Research, Vol. 128, 1-17, 2012.
doi:10.2528/PIER12031505
References

1. Pennell, D., U. Sechtem, C. Higgins, W. Manning, G. Pohost, F. Rademakers, A. van Rossum, L. Shaw, and E. Yucel, "Clinical indications for cardiovascular magnetic resonance (CMR): Consensus panel report," J. Cardiovasc Magn. Reson., Vol. 6, No. 4, 727-765, 2004.
doi:10.1081/JCMR-200038581

2. Mavrogeni, S., F. Rademakers, and D. Cokkinos, "Clinical application of cardiovascular magnetic resonance," Hellenic J. Cardiol., Vol. 45, 401-405, 2004.

3. Roguin, A. and D. Goldsher, "Magnetic resonance imaging and implantable cardiac electronic devices: It's not what we can do,it's what we should do," Isr. Med. Assoc. J., Vol. 12, No. 7, 436-438, 2008.

4. Kalin, R. and M. Stanton, "Current clinical issues for MRI scanning of pacemaker and defibrillator patients," Pacing Clin.Electrophysiol., Vol. 28, 326-328, 2005.
doi:10.1111/j.1540-8159.2005.50024.x

5. Shellock, F. and S. Morisoli, "Ex vivo evaluation of ferromagnetism, heating, and artifacts produced by heart valve prostheses exposed to a 1.5T MR system," J. Magn. Reson. Imaging, Vol. 4, 756-758, 1994.
doi:10.1002/jmri.1880040521

6. Edwards, M., K. Taylor, and F. Shellock, "Prosthetic heart valves:Evaluation of magnetic field interactions, heating and artifacts at 1.5 T," J. Magn. Reson. Imaging, Vol. 12, 363-369, 2000.
doi:10.1002/1522-2586(200008)12:2<363::AID-JMRI21>3.0.CO;2-3

7. Soulen, R., T. Budinger, and C. Higgins, "Magnetic resonance imaging of prosthetic heart valves," Radiology, Vol. 154, 705-707, 1985.

8. Condon, B. and D. Hadley, "Potential MR hazard to patients with metallic heart valves: The lenz effect," J. Magn. Reson. Imaging, Vol. 12, 171-176, 2000.
doi:10.1002/1522-2586(200007)12:1<171::AID-JMRI19>3.0.CO;2-W

9. Robertson, N. M., M. Diaz-Gomez, and B. Condon, "Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the lenz effect using a computational model," Phys. Med. Biol., Vol. 45, 3793-3807, 2000.
doi:10.1088/0031-9155/45/12/320

10. Garrett, M. W., "Thick cylindrical coil systems for strong magnetic fields with field or gradient homogeneities of the 6th to 20th order," Journal of Applied Physics, Vol. 38, No. 6, 2563-2586, 1967.
doi:10.1063/1.1709950

11. Zhao, H. and S. Crozier, "A design method for superconducting MRI magnets with ferromagnetic material," Meas. Sci. Technol., Vol. 13, 2047, 2002.

12. Kalafala, A. K. and S. Crozier, "Optimized configurations for actively shielded magnetic resonance imaging magnets," IEEE Tran. Magn., Vol. 27, No. 2, 1696-1699, 1991.
doi:10.1109/20.133515

13. Sinha, G., R. Sundararaman, and G. Singh, "Design concepts of optimized MRI magnet," IEEE Tran. Magn., Vol. 44, No. 10, 2351-2360, 2008.
doi:10.1109/TMAG.2008.2001843

14. Ansys Product Suit. "Maxwell 3D,", http://www.ansoft.com/pro-ducts/em/maxwell/, 2011.

15. Henneron, T., Y. L. Menach, F. Piriou, O. Moreau, S. Clnet,J. Ducreux, J. Vrit, J. Villeneuve, and E. Nationale, "Source field computation in NDT applications," IEEE Tran. Magn., Vol. 43, No. 4, 1785-1788, 2007.
doi:10.1109/TMAG.2007.892522

16. Lynch, W. and Implants, Van Vostrand Reinhold, 48-94, New York, 1982.

17. Chandran, K., B. Khalighi, and C.-J. Chen, "Experimental study of physiological pulsatile flow past valve prostheses in a modeof of human aorta-II. Tilting disc valves and the effect of orientation," Journal of Biomechanics, Vol. 18, No. 10, 773-780, 1985.
doi:10.1016/0021-9290(85)90052-1

18. Ren, Z., "T-omega formulation for eddy-current problems in multiply connected regions," IEEE Tran. Magn., Vol. 38, No. 2, 557-560, 2002.
doi:10.1109/20.996146

19. Zhou, P., W. N. Fu, D. Lin, D. Stanton, and Z. J. Cendes, "Numerical modeling of magnetic devices," IEEE Tran. Magn., Vol. 40, No. 4, 1803-1809, 2004.
doi:10.1109/TMAG.2004.830511

20. Crozier, S., "Compact MRI magnet design by stochastic optimization," J. Magn. Reson., Vol. 127, 233-237, 1997.
doi:10.1006/jmre.1997.1200

21. Morgan, P. N., S. M. Conolly, and A. Macovski, "Resistive homogeneous MRI magnet design by matrix subset selection," Magn. Reson. Med., Vol. 41, No. 6, 1221-1229, 1999.
doi:10.1002/(SICI)1522-2594(199906)41:6<1221::AID-MRM19>3.0.CO;2-E

22. Thompson, M. R., R. W. Brown, and V. C. Srivastava, "An inverse approach to the design of MRI main magnets," IEEE Tran. Magn., Vol. 30, No. 1, 108-112, 1994.
doi:10.1109/20.272522

23. Zhao, H., S. Crozier, and D. M. Doddrell, "Asymmetric MRI magnet design using a hybrid numerical method," J Magn. Reson., Vol. 141, No. 2, 340-346, 1999.
doi:10.1006/jmre.1999.1924

24. Ravaud, R. and G. Lemarquand, "Magnetic field in MRI yokeless devices: Analytical approach," Progress In Electromagnetics Research, Vol. 94, No. 2, 327-341, 2009.
doi:10.2528/PIER09061205