Vol. 128
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-11
Scattering of Gaussian Beam by a Spheroidal Particle
By
Progress In Electromagnetics Research, Vol. 128, 539-555, 2012
Abstract
Gaussian beam scattering by a spheroidal particle is studied in detail. A theoretical procedure is given to expand an incident Gaussian beam in terms of spheroidal vector wave functions within the generalized Lorenz-Mie theory framework. Exact analytic solutions are obtained for an arbitrarily oriented spheroid with non-confocal dielectric coating. Normalized differential scattering cross sections are shown and discussed for three different cases of a dielectric spheroid, spheroid with a spherical inclusion and coated spheroid.
Citation
Xianming Sun, Haihua Wang, and Huayong Zhang, "Scattering of Gaussian Beam by a Spheroidal Particle," Progress In Electromagnetics Research, Vol. 128, 539-555, 2012.
doi:10.2528/PIER12031409
References

1. Gouesbet, G., B. Maheu, and G. Gréhan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A, Vol. 5, 1427-1443, 1988.
doi:10.1364/JOSAA.5.001427

2. Hadad, Y. and T. Melamed, "Parameterization of the tilted Gaussian beam waveobjects," Progress In Electromagnetics Research, Vol. 102, 65-80, 2010.
doi:10.2528/PIER09120405

3. Li, Y. Q., Z.-S. Wu, and L. G. Wang, "Polarization characteristics of a partially coherent Gaussian Schell-model beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
doi:10.2528/PIER11092201

4. Klacka, J. and M. Kocifaj, "On the scattering of electromagnetic waves by a charged sphere," Progress In Electromagnetics Research, Vol. 109, 17-35, 2010.
doi:10.2528/PIER10072708

5. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.

6. Han, Y. P. and Z. S. Wu, "Scattering of a spheroidal particle illuminated by a Gaussian beam," Appl. Opt., Vol. 40, 2501-2509, 2001.
doi:10.1364/AO.40.002501

7. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

8. Jandieri, V., K. Yasumoto, and Y.-K. Cho, "Rigorous analysis of electromagnetic scattering by cylindrical EBG structures," Progress In Electromagnetics Research, Vol. 121, 317-342, 2011.
doi:10.2528/PIER11090903

9. Jin, Y., D. Gao, and L. Gao, "Plasmonic resonant light scattering by a cylinder with radial anisotropy," Progress In Electromagnetics Research, Vol. 106, 335-347, 2010.
doi:10.2528/PIER10060601

10. Raymond Ooi, C. H., "Near-field and particle size effects in coherent raman scattering," Progress In Electromagnetics Research, Vol. 117, 479-494, 2011.

11. Jin, Y., D. Gao, and L. Gao, "Plasmonic resonant light scattering by a cylinder with radial anisotropy," Progress In Electromagnetics Research, Vol. 106, 335-347, 2010.
doi:10.2528/PIER10060601

12. Han, Y. P., L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, "Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz-Mie theory framework," Optics Communications, Vol. 231, 71-77, 2004.
doi:10.1016/j.optcom.2003.12.024

13. Xu, F., K. F. Ren, and X. Cai, "Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates," J. Opt. Soc. Am. A, Vol. 24, 109-118, 2007.
doi:10.1364/JOSAA.24.000109

14. Xu, F., K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, "Generalized Lorenz-Mie theory for an arbitrarily oriented,located, and shaped beam scattered by homogeneous spheroid," J. Opt. Soc. Am. A, Vol. 24, 119-131, 2007.
doi:10.1364/JOSAA.24.000119

15. Zhang, H. Y. and Y. P. Han, "Addition theorem for the spherical vector wave functions and its application to the beam shape coeffcients," J. Opt. Soc. Am. B, Vol. 11, 255-260, 2008.
doi:10.1364/JOSAB.25.000255

16. Carro, Ceballos, P. L., J. De Mingo Sanz, and P. G. Dúcar, "Radiation pattern synthesis for maximum mean effective gain with spherical wave expansions and particle swarm techniques," Progress In Electromagnetics Research, No. 103, 355-370, 2010.
doi:10.2528/PIER10031808

17. Zhang, H. Y. and Y. F. Sun, "Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model," J. Opt. Soc. Am. B., Vol. 27, 883-887, 2010.
doi:10.1364/JOSAB.27.000883

18. Han, Y., H. Zhang, and X. Sun, "Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries," Applied Physics B -- Lasers and Optics, Vol. 84, 485-492, 2006.
doi:10.1007/s00340-006-2298-7

19. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Chapter 4, Princeton University Press, Princeton, NJ, 1957.

20. Davis, L. W., "Theory of electromagnetic beam," Phys. Rev. A, Vol. 19, 1177-1179, 1979.
doi:10.1103/PhysRevA.19.1177

21. Doicu, A. and T. Wriedt, "Computation of the beam-shape coeffcients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions," App. Opt., Vol. 36, 2971-2978, 1997.
doi:10.1364/AO.36.002971

22. Barton, J. P. and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam," J. Appl. Phys., Vol. 66, 2800-2802, 1989.
doi:10.1063/1.344207

23. Flammer, C., Spheroidal Wave Functions, Stanford University Press, Stanford, California, 1957.

24. Asano, S. and G. Yamamoto, "Light scattering by a spheroid particle," Appl. Opt., Vol. 14, 29-49, 1975.

25. Asano, S., "Light scattering properties of spheroidal particles," Appl. Opt., Vol. 18, 712-723, 1979.
doi:10.1364/AO.18.000712

26. Dalmas, J. and R. Deleuil, "Multiple scattering of electromagnetic waves from two prolate spheroids with perpendicular axes of revolution," Radio Science, Vol. 28, 105-119, 1993.
doi:10.1029/92RS01777

27. Li, L. W., M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, "Computations of spheroidal harmonics with complex arguments:A review with an algorithm," Physical Review E, Vol. 58, 6792-6806, 1998.
doi:10.1103/PhysRevE.58.6792