Vol. 34
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-04
Prediction of Multiple Magnetic Dipole Model Parameters from Near Field Measurements Employing Stochastic Algorithms
By
Progress In Electromagnetics Research Letters, Vol. 34, 111-122, 2012
Abstract
In this paper, the problem of predicting far field magnitude from near field measurements of an equipment under test (EUT) is studied. Firstly, a multiple magnetic dipole model is developed to simulate the magnetic behavior of the EUT. The parameters of the model (dipoles positions and magnetic moments) are calculated using the values of the near field applying the Particle Swarm Optimization (PSO) algorithm. For the evaluation of the method, extended simulations were conducted, producing theoretical values and distorting them with noise, and then the developed algorithm was used to create the proper model. Finally, the theoretical results are compared to the field assessments the proper models produced.
Citation
Nikolaos C. Kapsalis, Sarantis-Dimitrios J. Kakarakis, and Christos N. Capsalis, "Prediction of Multiple Magnetic Dipole Model Parameters from Near Field Measurements Employing Stochastic Algorithms," Progress In Electromagnetics Research Letters, Vol. 34, 111-122, 2012.
doi:10.2528/PIERL12030905
References

1. Mehlem, K., "Multiple magnetic dipole modeling and field prediction of satellites," IEEE Transactions on Magnetics, Vol. 14, No. 5, 1064-1071, Sep. 1978.

2. Nara, T., S. Suzuki, and S. Ando, "A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients," IEEE Transactions on Magnetics, Vol. 42, No. 10, 3291-3293, Oct. 2006.

3. Song, H., J. Chen, D. Zhou, D. Hou, and J. Lin, "An equivalent model of magnetic dipole for the slot coupling of shielding cavity," 8th International Symposium on Antennas, Propagation and EM Theory, ISAPE 2008, 970-973, Nov. 2-5, 2008.

4. Junge, A. and F. Marliani, "Prediction of DC magnetic fields for magnetic cleanliness on spacecraft," 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 834-839, Aug. 14-19, 2011.

5. Endo, H., T. Takagi, and Y. Saito, "A new current dipole model satisfying current continuity for inverse magnetic field source problems," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1748-1751, May 2005.

6. Mehlem, K. and A. Wiegand, "Magnetostatic cleanliness of spacecraft," 2010 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 936-944, Apr. 12-16, 2010.

7. Mikki, S. M. and Y. M. M. Antar, "Near-field analysis of electromagnetic interactions in antenna arrays through equivalent dipole models," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1381-1389, Mar. 2012.

8. Ciamak, A. and H. Jurgen, "Real-time ECG emulation: A multiple dipole model forelectrocardiography simulation,", Studies in Health Technology and Informatics, 142:7 9, PMID: 19377101, 2009.

9. Pan, S., J. Kim, S. Kim, J. Park, H. Oh, and J. Fan, "An equivalent three-dipole model for IC radiated emissions based on TEM cell measurements," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 652-656, Jul. 25-30, 2010.

10. Zhang, Y.-J., S.-X. Gong, X. Wang, and W.-T. Wang, "A hybrid genetic-algorithm space-mapping method for the optimization of broadband aperture-coupled asymmetrical U-shaped slot antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2139-2153, 2010.

11. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1998, 2011.

12. Rahmat-Samii, Y., "Genetic algorithm (GA) and particle swarm optimization (PSO) in engineering electromagnetics," 17th International Conference on Applied Electromagnetics and Communications, ICECom 2003, 1-5, Oct. 1-3, 2003.

13. Ali, F. A. and K. T. Selvan, "A study of PSO and its variants in respect of microstrip antenna feed point optimization," Asia Pacific Microwave Conference, APMC 2009, 1817-1820, Dec. 7-10, 2009.

14. Nanbo, J. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary,single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 556-567, Mar. 2007.

15. Elgallad, A., M. El-Hawary, W. Phillips, and A. Sallam, "PSO-based neural network for dynamic bandwidth re-allocation [power system communication]," 2002 Large Engineering Systems Conference on Power Engineering, LESCOPE 02, 98-102, 2002.

16. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, Nov./Dec. 1995.