Vol. 31
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-23
A High Performance Balun Bandpass Filter with Very Simple Structure
By
Progress In Electromagnetics Research Letters, Vol. 31, 169-176, 2012
Abstract
A high performance balun bandpass filter (BPF) with very simple structure is proposed in this letter, this structure realizes superior performance in bandpass filtering meanwhile with good differential performance of the balun. The proper balanced outputs and BPF characteristic by the symmetric feeding and skew-symmetric feeding have been obtained, and the theory of this simple structure for unbalanced input to balanced outputs has been studied. The center frequency of the fabricated balun-BPF was operated at 2.4 GHz with 5.8% fractional bandwidth (FBW), and this frequency is used for Bluetooth and some other communication systems. The differences between the two outputs are 180° ± 5° in phase and within 0.39 dB in magnitude. At f0, the amplitude imbalanced and phase difference are within 0.37 dB and 179.2°, respectively. The measured frequency responses agree well with the simulated ones. With the theoretical analyses and practical results, it is shown that the proposed one has the advantages of simple structure, convenient analysis and good performance of both BPF and balun.
Citation
Wei Kang, Hui Wang, Chen Miao, Chen Tan, and Wen Wu, "A High Performance Balun Bandpass Filter with Very Simple Structure," Progress In Electromagnetics Research Letters, Vol. 31, 169-176, 2012.
doi:10.2528/PIERL12030406
References

1. Cheong, P., T.-S. Lv, W.-W. Choi, and K.-W. Tam, "compact microstrip square-loop dual mode balun-bandpass filter with simultaneous spurious response suppression and differential performance improvement," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 2, 77-79, 2011.

2. Jung, E.-Y. and H.-Y. Hwang, "A balun-BPF using a dual mode ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, 652-654, 2007.
doi:10.1109/LMWC.2007.903442

3. Kang, S.-J. and H.-Y. Hwang, "Ring-balun-bandpass filter with harmonic suppression," IET Microw. Antennas Propag., Vol. 4, No. 11, 1847-1854, 2010.
doi:10.1049/iet-map.2009.0295

4. Huang, G.-S. and C.-H. Chen, "Dual-band balun bandpass filter with hybrid structure," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 7, 356-358, 2011.
doi:10.1109/LMWC.2011.2144965

5. Wu, C.-H., C.-H. Wang, S.-Y. Chen, and C.-H. Chen, "Balanced-to-unbalanced bandpass filters and the antenna application," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 11, 2474-2482, 2008.
doi:10.1109/TMTT.2008.2005888

6. Sun, S. and W. Menzel, "Novel dual-mode balun bandpass filters using single cross-slotted patch resonator," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 415-417, 2011.
doi:10.1109/LMWC.2011.2158535

7. Huang, G.-S., C.-H. Wu, and C.-H. Chen, "LTCC balun bandpass filters using dual-response resonators," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 9, 483-485, 2011.
doi:10.1109/LMWC.2011.2162622

8. Yang, T., M. Tamure, and T. Itoh, "Compact hybrid resonator with series and shunt resonances used in miniaturized filters and balun filters," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 2, 390-402, 2010.
doi:10.1109/TMTT.2009.2038662

9. Tang, C.-W., "Design of a microstrip filter using multiple capacitively loaded coupled lines," IET Microw. Antennas Propag., Vol. 1, No. 3, 651-657, 2007.
doi:10.1049/iet-map:20050052

10. Wenzel, R.-J., "Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth," IEEE Trans. on Microw. Theory and Tech., Vol. 19, No. 8, 678-686, 1971.
doi:10.1109/TMTT.1971.1127609

11. Tsai, C.-M., S.-Y. Lee, and C.-C. Tsai, "Performance of a planar filter using a 0± feed structure," IEEE Trans. on Microw. Theory and Tech., Vol. 50, No. 10, 2362-2367, 2002.
doi:10.1109/TMTT.2002.803421