Vol. 32
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-12
On the Use of FDTD for HIRF Validation and Certification
By
Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012
Abstract
Preparing the 3D-geometry models to perform electromagnetic compatibility (EMC) numerical simulations can be tedious and time consuming. Furthermore, the need to include the test setup in the models, in order to validate the software, by comparing the numerical results with the measured data, may lead to unwieldy simulation models with often una ordable computational costs. In this paper, we provide strategies for optimizing and simplifying the modeling process, together with guidelines for achieving the most unfavorable case in the simulation of EMC problems, as required for a certi cation process. A test case from the European FP7 HIRF-SE project is analyzed in this paper as an example of how to identify the unnecessary elements for the simulation, while retaining the essential physics of the problem.
Citation
Guadalupe Gutierrez Gutierrez, Sergio Fernandez Romero, Jesus Alvarez, Salvador Gonzalez Garcia, and Enrique Pascual Gil, "On the Use of FDTD for HIRF Validation and Certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.
doi:10.2528/PIERL12030206
References

1. Zhao, X.-W., X.-J. Dang, Y. Zhang, and C.-H. Liang, "The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms," Progress In Electromagnetics Research, Vol. 69, 161-176, 2007.
doi:10.2528/PIER06121003

2. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and re°ector e®ects on monopole antenna factor using FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939307783239410

3. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303

4. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

5. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

6. Taflove, A. and S. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Boston, MA, 2005.

7. Garcia, S. G., A. R. Bretones, B. G. Olmedo, and R. G. Martin, "Finite difference time domain methods," Time Domain Techniques in Computational Electromagnetics, D. Poljak (ed.), 91-132, WIT Press, 2003.

8. Garcia, S. G., A. R. Bretones, B. G. Olmedo, and R. G. Martin, "New trends in FDTD methods in computational electrodynamics: Unconditionally stable schemes," Recent Res. Development in Electronics, Transworld Research Network, 2005.

9. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 1, 185-200, 1994.
doi:10.1006/jcph.1994.1159

10., [Online] Available: http:://www.hirf-se.eu.

11. The Certification Of Aircraft Electrical And Electronic Systems For Operation In The High-intensity Radiated Fields (hirf ) Environment, Federal Aviation Administration Std. AC No: 20-158, Jul. 2007.

12. Guide to Certification of Aircraft in a High Intensity Radiated Field (HIRF) Environment, EUROCAE Std., Rev. EUROCAE ED-107, March 2001/SAE ARP 5583, Rev. A, Jun. 2010.

13. Georgakopoulos, A. V., C. R. Birtcher, and C. A. Balanis, "HIRF penetration through apertures: FDTD versus measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 282-294, Aug. 2001.
doi:10.1109/15.942601

14., http://www.ugrfdtd.es.aspx.
doi:10.1109/15.942601

16. Berenger, J.-P., "A multiwire formalism for the FDTD method," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.
doi:10.1109/15.865332

17. Guiffaut, , C., A. Reineix, and B. Pecqueux, "New oblique thin wire formalism in the FDTD method with multiwire junctions," IEEE Transactions on Antennas and Propagation, No. 99, 2011, early Access.

18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley, 1989.