Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-05
Hybrid Finite Difference/Finite Volume Method for 3-d Conducting Media Problems
By
Progress In Electromagnetics Research M, Vol. 24, 85-95, 2012
Abstract
A hybrid time-domain method combing finite-difference and cell-centered finite-volume method is presented in this paper. This method is applied to solve three dimensional electromagnetic problems which involve media having finite conductivity. The fractional-step technique (FST) for FVTD scheme is applied to solve these problems. Local time-step scheme is used to enhance the efficiency of this method. Numerical results are given and compared with a reliable numerical method, which is used to show the validation of this method.
Citation
Zhi-Li He, Kai Huang, and Chang-Hong Liang, "Hybrid Finite Difference/Finite Volume Method for 3-d Conducting Media Problems," Progress In Electromagnetics Research M, Vol. 24, 85-95, 2012.
doi:10.2528/PIERM12022505
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time Domain Method, 2nd Ed., Artech House, Norwood, MA, 2000.

3. Bonnet, P., X. Ferrieres, B. L. Michielsen, P. Klotz, and J. L. Roumiguires, Time Domain Electromagnetics, Ch. 9, Academic Press, 1999.

4. Shang, J. S., "Characteristic-based algorithms for solving the Maxwell equations in the time domain," IEEE Antennas Propagat. Mag., Vol. 37, 15-25, Jun. 1995.
doi:10.1109/74.388807

5. Riley, D. J. and C. D. Turner, "Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique,", Sandia Report, SAND95-2790, UC-706, Dec. 1995.
doi:10.1109/74.388807

6. Morton, K. W., Numerical Solution of Convection-diffusion Problems, Chapman & Hall, 1996.

7. Bozza, G., D. D. Caviglia, L. Ghelardoni, and M. Pastorino, "Cell-centered finite-volume time-domain method for conducting media," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 9, 477-479, Sep. 2010.
doi:10.1109/LMWC.2010.2057243

8. Bommaraju, C., "Investigating finite volume time domain methods in computational electromagnetics,", Ph.D. Dissertation, Technischen University Darmstadt, Darmstadt, 2009.

9. Andersson, U., "Time-domain methods for the maxwell equations,", Ph.D. Dissertation, Department of Numerical Analysis and Computer Science, Royal Institute of Technology, Stockholm, 2001.

10. Remaki, M., "A new finite volume scheme for solving Maxwell's system," COMPEL, 913-931, 2000.

11. Yang, M., Y. Chen, and R. Mittra, "Hybrid finite-difference/finite-volume time-domain analysis for microwave integrated circuits with curved PEC surfaces using a nonuniform rectangular grid," IEEE Trans. Microwave Theory Tech., Vol. 48, 969-975, Jun. 2000.
doi:10.1109/22.846728

12. Ferrieres, X., J.-P. Parmantier, S. Bertuol, and A. R. Ruddle, "Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem," IEEE Trans. Electromagnetic Compatibility, Vol. 46, No. 4, 624-634, Nov. 2004.
doi:10.1109/TEMC.2004.837837

13. Leveque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2004.

14. Haider, F., J.-P. Croisille, and B. Courbet, "Stability analysis of the cell centered finite-volume MUSCL method on un-structured grids," Numer. Math., Vol. 113, 555-600, 2009, DOI10.1007/s00211-009-0242-6.
doi:10.1007/s00211-009-0242-6

15. Medgyesi-Mitschang, L. N., J. M. Putam, and M. B. Gedera, "Generalized method of moments for 3D penetrable scatters," Opt. Soc. Am. A, Vol. 11, No. 4, 1383-1398, 1994.
doi:10.1364/JOSAA.11.001383

16. He, Z.-L., K. Huang, Y. Zhang, and C.-H. Liang, "A new local time-step scheme for hybrid finite difference/finite volume method," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5-, 641-652, 2012.
doi:10.1080/09205071.2012.710785