Vol. 30
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-03-26
Comparison of THz Backward Wave Oscillators Based on Corrugated Waveguides
By
Progress In Electromagnetics Research Letters, Vol. 30, 163-171, 2012
Abstract
The backward wave oscillator is a promising and powerful source at THz frequencies. The rectangular corrugated waveguide is an effective solution as slow wave structure to design backward-wave oscillators (BWOs), suitable to be fabricated by photolithographic high-aspect ratio processes. However, assembling and vacuum pumping are a critical issue. In this paper, a corrugated waveguide with the width of the corrugation narrower than the waveguide width will be investigated as slow wave structure for BWOs. A relevant improvement from the point of view of the assembling, together with even better performance will be demonstrated. Two backward wave oscillators, at 1 THz central frequency, designed with conventional and narrow corrugated waveguide will be compared in terms of output power and frequency band of tuning.
Citation
Mauro Mineo, and Claudio Paoloni, "Comparison of THz Backward Wave Oscillators Based on Corrugated Waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 163-171, 2012.
doi:10.2528/PIERL12013107
References

1. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications --- Explosives, weapons and drugs," Semiconductor Science and Technology, Vol. 20, No. 7, S266-S280, 2005.
doi:10.1088/0268-1242/20/7/018

2. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory Techniques, Vol. 50, 910-928, Mar. 2002.
doi:10.1109/22.989974

3. Sirtori, C., "Applied physics: Bridge for the terahertz gap," Nature, Vol. 417, 132-133, May 2002.
doi:10.1038/417132b

4. Booske, J., R. Dobbs, C. Joye, C. Kory, G. Neil, G.-S. Park, J. Park, and R. Temkin, "Vacuum electronic high power terahertz sources," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 54-75, Sep. 2011.
doi:10.1109/TTHZ.2011.2151610

5. Korolev, A. N., S. A. Zaitsev, I. I. Golenitskij, Y. V. Zhary, A. D. Zakurdayev, M. I. Lopin, P. M. Meleshkevich, E. A. Gelvich, A. A. Negirev, A. S. Pobedonostsev, V. I. Poognin, V. B. Homich, and A. N. Kargin, "Traditional and novel vacuum electron devices," IEEE Transactions on Electron Devices, Vol. 48, 2929-2937, Dec. 2001.
doi:10.1109/16.974731

6. Gewartowski, J. and H.Watson, Principles of Electron Tubes, Van Nostrand, 1965.

7. Johnson, H., "Backward-wave oscillators," Proceedings of the IRE, Vol. 43, No. 6, 684-697, Jun. 1955.
doi:10.1109/JRPROC.1955.278054

8. Borisov, A., U. Budzinsky, S. Bykovsky, A. Galdetskiy, A. Korolev, M. Lopin, A. Negirev, V. Pugnin, G. Ruvinsky, and B. Sazonov, "The development of vacuum microwave devices in Istok," IEEE International Vacuum Electronics Conference (IVEC), 437-438, Feb. 2011.
doi:10.1109/IVEC.2011.5747063

9. Shin, Y.-M., D. Gamzina, L. Barnett, F. Yaghmaie, A. Baig, and N. Luhmann, "UV lithography and molding fabrication of ultrathick micrometallic structures using a KMPR photoresist," Journal of Microelectromechanical Systems, Vol. 19, No. 3, 683-689, Jun. 2010.
doi:10.1109/JMEMS.2010.2045880

10. Shin, Y.-M., J.-K. So, S.-T. Han, K.-H. Jang, G.-S. Park, J.-H. Kim, and S.-S. Chang, "Microfabrication of millimeter wave vacuum electron devices by two-step deep-etch x-ray lithography," Applied Physics Letters, Vol. 88, No. 9, 091916, 2006.
doi:10.1063/1.2178770

11. Guidee, P. and L. Teyssier, "A 850--1000 GHz backward-wave oscillator for advanced applications," Society of Photo-optical Instrumentation Engineers (SPIE) Conference Series, Vol. 598, 93-98, ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, E. Kollberg, Ed., 1986.

12. Tucek, J., D. Gallagher, K. Kreischer, and R. Mihailovich, "A compact, high power, 0.65 THz source," IEEE International Vacuum Electronics Conference (IVEC), 16-17, Apr. 2008.
doi:10.1109/IVELEC.2008.4556321

13. Mineo, M. and C. Paoloni, "Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications," IEEE Transactions on Electron Devices, Vol. 57, No. 6, 1481-1484, Jun. 2010.
doi:10.1109/TED.2010.2045678

14. Mineo, M. and C. Paoloni, "Backward wave oscillators for THz applications based on corrugated waveguide," IEEE International Vacuum Electronics Conference (IVEC), 265-266, Feb. 2011.
doi:10.1109/IVEC.2011.5746977

15. Mineo, M. and C. Paoloni, "Narrow corrugation rectangular waveguide for terahertz TWTs," Electronics Letters, Vol. 46, No. 13, 927-928, 2010.
doi:10.1049/el.2010.3511

16. Field, M., R. Borwick, V. Mehrotra, B. Brar, J. Zhao, Y.-M. Shin, D. Gamzina, A. Spear, A. Baig, L. Barnett, N. Luhmann, T. Kimura, J. Atkinson, T. Grant, Y. Goren, and D. E. Pershing, "1.3 : 220 GHz 50W sheet beam travelling wave tube amplifier," IEEE International Vacuum Electronics Conference (IVEC), 21-22, IEEE, May 2010.

17. Shin, Y.-M., L. R. Barnett, and N. C. Luhmann, "Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Transactions on Electron Devices, Vol. 56, No. 5, 706-712, May 2009.
doi:10.1109/TED.2009.2015404

18. CST User Manual, [Online]. Available: http://www.cst.com.

19. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytical design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2479-2494, 2010.
doi:10.1163/156939310793675745

20. Goplen, B., L. Ludeking, D. Smith, and G. Warren, "User-configurable MAGIC for electromagnetic PIC calculations," Computer Physics Communications, Vol. 87, No. 1--2, 54-86, 1995.
doi:10.1016/0010-4655(95)00010-D