Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-21
A Frequency Selective Absorbing Ground Plane for Low-RCS Microstrip Antenna Arrays
By
Progress In Electromagnetics Research, Vol. 126, 317-332, 2012
Abstract
An efficient strategy for reducing the signature of an antenna is to substitute the conventional solid ground plane with a patterned ground plane thus letting the incoming energy to pass through the structure except over the operating band of the antenna. However, in a real environment, the energy flowing through the FSS (Frequency Selective Surface) can be intercepted by eventual scatterers located behind the antenna, so to nullify the RCS (Radar Cross Section) reduction. To overcome this drawback, a novel composite structure is proposed which is able to dissipate such energy by placing a thin absorbing layer below the FSS ground. It is shown that a careful analysis has to be performed to accomplish this goal since the transparent antenna array and the backing absorber strongly interact and thus they cannot be separately designed. The optimal value of the foam spacer thickness between the FSS ground and the absorbing layer is investigated by an efficient equivalent transmission line approach. Criteria for enlarging the low-RCS band with respect to the free space design are also provided. An antenna array prototype backed by the thin multilayer structure is finally manufactured and tested.
Citation
Filippo Costa, Simone Genovesi, and Agostino Monorchio, "A Frequency Selective Absorbing Ground Plane for Low-RCS Microstrip Antenna Arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., SciTech Publication, Raleigh, NC, 2004.

2. Kraus, J. D. and R. J. Marhefka, Antennas, 3rd Ed., Mc Graw-Hill, New York, 2002.

3. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangular patch by using distributed loading," Electron. Lett., Vol. 28, No. 25, 2322-2323, 1992.

4. Li, Y., H. Zhang, Y. Fu, and N. Yuan, "RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material," IEEE Antennas Wireless Propag. Lett., Vol. 7, 473-476, 2008.

5. Wang, F. W., S. X. Gong, S. Zhang, X. Mu, and T. Hong, "RCS reduction of array antennas with radar absorbing structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2487-2496, 2011.
doi:10.1163/156939311798806239

6. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband Koch fractal antenna with low backscattering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-2623, 2010.
doi:10.1163/156939310793675790

7. Jiang, W., T. Hong, Y. Liu, S.-X. Gong, Y. Guan, and S. Cui, "A novel technique for radar cross section reduction of printed antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 51-60, 2010.
doi:10.1163/156939310790322145

8. Gustafsson, M., "RCS reduction of integrated antenna arrays and radomes with resistive sheets," IEEE Antennas and Propag. Symp., 3479-3482, July 2006.

9. Jiang, W., Y. Liu, S. Gong, and T. Hong, "Application of bionics in antenna radar cross section reduction," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1275-1278, 2009.
doi:10.1109/LAWP.2009.2037168

10. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," IEEE Microwave Guided Wave Lett., Vol. 2, 196-198, 1992.
doi:10.1109/75.134353

11. Jang, H.-K., W.-J. Lee, and C.-G. Kim, "Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band," Smart Materials and Structures, Vol. 20, 015007, 2011.
doi:10.1088/0964-1726/20/1/015007

12. Hanse, R. C., "Relationships between antennas as scatterers and as radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989.
doi:10.1109/5.32056

13. Bletsas, A., A. G. Dimitriou, and J. N. Sahalos, "Improving backscatter radio tag efficiency," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 6, 1502-1509, Jun. 2010.
doi:10.1109/TMTT.2010.2047916

14. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

15. Misran, N., R. Cahill, and V. F. Fusco, "RCS reduction technique for reflectarray antennas," Electron. Lett., Vol. 39, 1630-1631, Nov. 2003.

16. Li, H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reflectarray antenna backed on FSS for low RCS and high radiation performances ," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303

17. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201

18. Genovesi, S. and A. Monorchio, "Low profile array with reduced radar cross section," 2010 URSI International Symposium on Electromagnetic Theory (EMTS), 799-802, Aug. 16-19, 2010.

19. Genovesi, S., F. Costa, and A. Monorchio, "Low profile array withreduced radar cross section by using frequency selective surfaces," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 5, 2012.

20. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces ," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

21. Erdemli, Y. E., K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Trans. on Antennas and Propagation, Vol. 50, No. 12, 1716-1724, Dec. 2002.
doi:10.1109/TAP.2002.807377

22. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propagation, Vol. 55, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

23. Al-Joumayly, M. and N. Behdad, "A new technique for design of low-pro¯le, second-order, bandpass frequency selective surfaces," IEEE Trans. on Antennas and Propagation, Vol. 57, 452-459, 2009.
doi:10.1109/TAP.2008.2011382

24. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable fabry-perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

25. Newman, E. H., "Real frequency wideband impedance matching with non-minimum reactance equalizers," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 11, 3597-3603, Nov. 1991.
doi:10.1109/TAP.2005.858816

26. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346

27. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surfaces by a simple equivalent circuit model," IEEE Antennas and Propagation Magazine, Vol. 54, 2012.

28. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches ," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, 2008.
doi:10.1109/TAP.2008.923327

29. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

30. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, New York, 2000.

31. Tretyakov, S., Analytical Modelling in Applied Electromagnetics, Artech House, Boston, 2003.

32. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269

33. Glover, B., K. Kirschenmann, and K. W. Whites, "Engineering R-card surface resistivity with printed metallic patterns," Proceedings Metamaterials' 2007 International Congress on Advanced Electr. Materials in Microwaves and Optics, 621-624, Rome, Italy, Oct. 22-26, 2007.

34. Bianconi, G., F. Costa, S. Genovesi, and A. Monorchio, "Optimal design of dipole antennas backed by a finite high-impedance screen," Progress In Electromagnetics Research C, Vol. 18, 137-151, 2011.