Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-08
Solving Periodic Eigenproblems by Solving Corresponding Excitation Problems in the Domain of the Eigenvalue
By
Progress In Electromagnetics Research, Vol. 126, 65-84, 2012
Abstract
Periodic eigenproblems describing the dispersion behavior of periodically loaded waveguiding structures are considered as resonating systems. In analogy to resonators, their eigenvalues and eigensolutions are determined by solving corresponding excitation problems directly in the domain of the eigenvalue. Arbitrary excitations can be chosen in order to excite the desired modal solutions, where in particular lumped ports and volumetric current distributions are considered. The method is employed together with a doubly periodic hybrid finite element boundary integral technique, which is able to consider complex propagation constants in the periodic boundary conditions and the Green's functions. Other numerical solvers such as commercial simulation packages can also be employed with the proposed procedure, where complex propagation constants are typically not directly supported. However, for propagating waves with relatively small attenuation, it is shown that the attenuation constant can be determined by perturbation methods. Numerical results for composite right/left-handed waveguides and for the leaky modes of a grounded dielectric slab are presented.
Citation
Thomas F. Eibert, Yvonne Weitsch, Huanlei Chen, and M. E. Gruber, "Solving Periodic Eigenproblems by Solving Corresponding Excitation Problems in the Domain of the Eigenvalue," Progress In Electromagnetics Research, Vol. 126, 65-84, 2012.
doi:10.2528/PIER12012405
References

1. Saad, Y., Numerical Methods for Large Eigenvalue Problems, Halstead Press, New York, 1992.

2. Jin, J., "The Finite Element Method in Electromagnetics," John Wiley & Sons, New York, 2002.

3. Lehoucq, R., D. Sorensen, and C. Yang, "ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," 1997, http://www.caam.rice.edu/soft-ware/ARPACK/.

4. Lubkowski, G., B. Bandlow, R. Schuhmann, and T. Weiland, "Effective modeling of double negative metamaterial macrostructures," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1136-1146, May 2009.
doi:10.1109/TMTT.2009.2017349

5. Weitsch, Y. and T. F. Eibert, "Periodically loaded waveguide analysis by evanescent mode superposition," European Microw. Conf. (EuMC), Rome, Italy, 2009.

6. Glock, H.-W., K. Rothemund, M. Borecky, and U. van Rienen, "Calculation of RF eigenmodes using S-parameters of resonator parts," Proc. EPAC, 1378-1380, Vienna, Austria, 2000.

7. Kamiya, N. and S. T. Wu, "Generalized eigenvalue formulation of the Helmholtz equation by the Trefftz method," Engineering Computations, Vol. 11, 177-186, 1994.
doi:10.1108/02644409410799218

8. Li, Z.-C., "Error analysis of the Trefftz method for solving Laplace's eigenvalue problems," J. Computational and Applied Mathematics, Vol. 200, 231-254, 2007.
doi:10.1016/j.cam.2005.12.017

9. Karageorghis, A., "The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation," Applied Mathematics Letters, Vol. 14, 837-842, 2001.
doi:10.1016/S0893-9659(01)00053-2

10. Fan, C.-M., D.-L. Young, and C.-L. Chiu, "Method of fundamental solutions with external source for the eigenfrequencies of waveguides ," J. Marine Science and Technology, Vol. 17, No. 3, 164-172, 2009.

11. Reutskiy, S., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

12. Reutskiy, S. Y., "The method of external excitation for solving generalized Sturm-Liouville problems," J. Computational and Applied Mathematics, Vol. 233, 2374-2386, 2010.
doi:10.1016/j.cam.2009.10.022

13. Eibert, T. F., Y. Weitsch, and H. Chen, "Dispersion analysis of periodic structures by solving corresponding excitation problems," German Microw. Conf. (GeMiC), Darmstadt, Germany, 2011.

14. Chen, H., C. H. Schmidt, T. F. Eibert, and W. Che, "Dispersion and attenuation analysis of substrate integrated waveguides by driven eigenproblem computation," European Conf. Antennas Propag. (EuCAP), Rome, Italy, 2011.

15. Weitsch, Y., H. Chen, and T. F. Eibert, "Dispersion analysis of periodic structures by solving corresponding excitation problems," Frequenz, Vol. 65, No. 7-8, 247-252, 2011.
doi:10.1515/freq.2011.034

16. Eibert, T. F., J. L. Volakis, D. R. Wilton, and D. R. Jackson, "Hybrid FE/BI modeling of 3D doubly periodic structures uilizing triangular prismatic elements and a MPIE formulation accelerated by the Ewald transformation," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 843-850, May 1999.
doi:10.1109/8.774139

17. Eibert, T. F., Y. E. Erdemli, and J. L. Volakis, "Hybrid ¯nite element-fast spectral domain multilayer boundary integral modeling of doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2517-2520, Sept. 2003.
doi:10.1109/TAP.2003.816386

18. CST Microwave Studio, 2010, http://www.cst.com.

19. Bondeson, A., T. Rylander, and P. Ingelstrom, Computational Electromagnetics, Springer Science, New York, 2005.

20. Davidson, D. B., "Computational Electromagnetics for RF and Microwave Engineering," Cambridge University Press, Cambridge, UK, 2011.

21. Baum, C. E., E. J. Rothwell, K.-M. Chen, and D. P. Nyquist, "The singularity expansion method and its application to target identification ," Proc. IEEE, Vol. 79, No. 10, 1481-1492, 1991.
doi:10.1109/5.104223

22. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., Wiley Interscience, New York, USA, 2009.

23. Tamir, T. and A. A. Oliner, "Guided complex waves. Part 1: Fields at an interface," Proc. IEE, Vol. 110, No. 2, 310-324, Feb. 1963.

24. Eshra, I. and A. Kishk, "Analysis of left-handed rectangular waveguides with dielectric-filled corrugations using the asymptotic corrugation boundary ," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 3, 221-225, Jun. 2006.
doi:10.1049/ip-map:20050095

25. Hsu, C., R. Harrington, J. Mautz, and T. Sarkar, "On the location of leaky wave poles for a grounded dielectric slab," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 2, 346-349, Feb. 1991.
doi:10.1109/22.102980

26. Weitsch, Y. and T. F. Eibert, "Composite right-/left-handed interdigital leaky-wave antenna on a substrate integrated waveguide," European Conf. Antennas Propag. (EuCAP), Barcelona, Spain, 2010.

27. Weitsch, Y. and T. F. Eibert, "Eigenvalue computation of open periodically composed waveguides by series expansion," IEEE Antennas Propag. Soc. Int. Symp., Spokane, WA, Jul. 2011.