Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-14
Analysis of Multi-Scale Problem About Antenna Mounted on Electrically Large Platform by Using Connected Epa-PO
By
Progress In Electromagnetics Research, Vol. 126, 169-183, 2012
Abstract
In this paper, a hybrid method combining equivalence principle algorithm with physical optics is proposed to solve the radiation problem of antenna mounted on electrically large platform. It is based on domain decomposition method which is a scheme for multi-scale problems. Equivalence principle algorithm can simulate antenna accurately, and physical optics is an asymptotical method to obtain current distribution on the electrically large platform. Continuity of currents is considered when the conductor on the platform is decomposed into two parts by the equivalence surface. In addition, a preconditioning for the hybridization of equivalence principle algorithm and physical optics is discussed. Numerical results demonstrate the feasibility of the hybrid method.
Citation
Kaizhi Zhang, Jun Ou Yang, Feng Yang, Jian Zhang, and Yan Li, "Analysis of Multi-Scale Problem About Antenna Mounted on Electrically Large Platform by Using Connected Epa-PO," Progress In Electromagnetics Research, Vol. 126, 169-183, 2012.
doi:10.2528/PIER12011303
References

1. Wu, P., J. Pei, and G. Liang, "A novel super thin planar car antenna," IEEE International Conference on Microwave and Millimeter Wave Technology, 377-379, 2010.
doi:10.1109/ICMMT.2010.5524972

2. Hsu, H.-T., F.-Y. Kuo, and H.-T. Chou, "Convergence study of current sampling profiles for antenna design in the presence of electrically large and complex platforms using fit-UTD hybridization approach ," Progress In Electromagnetics Research, Vol. 99, 195-209, 2009.
doi:10.2528/PIER09092404

3. Byun, G., C. Seo, B. J. Jang, and H. Choo, "Design of aircraft on-glass antennas using a coupled feed structure," IEEE Trans. Antenn. Propag., No. 99, Jan. 2012.

4. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structure on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

5. Zhao, X. W., X. J. Dang, Y. Zhang, and C. H. Liang, "The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms," Progress In Electromagnetics Research, Vol. 69, 161-176, 2007.
doi:10.2528/PIER06121003

6. Xia, L., C.-F. Wang, L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Resonant behaviours of microstrip antenna in multilayered media: An efficient full-wave analysis," Progress In Electromagnetics Research, Vol. 31, 55-67, 2011.

7. Lim, C.-P., "Method of moments analysis of electrically large thin square and rectangular loop antennas: Near-and-far-zone field," Progress in Electromagnetics Research, Vol. 34, 117-141, 2001.
doi:10.2528/PIER01042402

8. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011.

9. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303

10. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects ," IEEE Trans. Antenn. Propag., Vol. 59, No. 9, Sep. 2011.

11. Peng, Z., X.-C. Wang, F.-R. Lei, and J.-F. Lee, "Integral equation based domain decomposition method for electromagnetic wave scattering problems," IEEE EMTS/URSI, 624-627, Aug. 2010.

12. Lu, Z.-Q., X. An, and W. Hong, "Substructure DDM with vector FEM for 3-D electromagnetic scattering problems," Microwave Conference Proceedings, Vol. 3, 3, 2005.

13. Liu, P. and Y.-Q. Jin, "The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface," IEEE Trans. Geoscience and Remote Sensing, Vol. 42, No. 5, May 2004.
doi:10.1109/TGRS.2004.830066

14. Li, M.-K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antenn. Propag., Vol. 55, No. 1, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

15. Sun, L.-E., M.-K. Li, and W. C. Chew, "Applying the low frequency technique to the equivalence principle algorithm," Antenna and Propagation Society International Symposium, 1-4, 2009.

16. Li, M.-K. and W. C. Chew, "A domain decomposition scheme based on equivalence theorem," Micro. Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, Sep. 2006.
doi:10.1002/mop.21777

17. Shao, H., J. Hu, Z. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

18. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, No. 1, Feb. 2009.
doi:10.1080/17455030802585365

19. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by multiple targets with surface equivalence principle algorithm," 3rd European Conference on Antenna and Propagation, 88-92, Mar. 2009.

20. Li, M.-K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antenn. Propag., Vol. 56, No. 8, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785

21. Li, M.-K. and W. C. Chew, "Using tap basis to implement the equivalence principle algorithm for domain decomposition in integral equations," Micro. Opt. Tech. Lett., Vol. 48, No. 11, 2218-2222, Nov. 2006.
doi:10.1002/mop.21933

22. Zong, X. Z., Z. P. Nie, S. Yan, and S. Q. He, "Application of the PE-basis function in hybrid MOM-PO methods," IEEE Antenna and Propagation Society International Symposium, 1-4, 2008.

23. Zhao, X.-W., Y. Zhang, and H.-W. Zhang, "Parallel MOM-PO method with out-of-core technique for analysis of complex arrays on electrically large platforms ," Progress In Electromagnetics Research, Vol. 108, 1-21, 2010.
doi:10.2528/PIER10072108

24. Hu, B., X. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MOM analysis for an electrically large antenna-radome structure," Process In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

25. Jin, Z., K. Zhao, P. H. Pathak, J. Zou, and J.-F. Lee, "A hybrid FEM-DDM-PO method for electrically large objects," IEEE Antenna and Propagation Society International Symposium, 5909-5912, Dec. 2007.

26. Zhang, K. Z., J. Zhang, J. Ouyang, and F. Yang, "A novel hybrid method with equivalence principle algorithm and physical optics for antenna problem on electrically large platform," IEEE AP-S/URSI, 2530-2532, 2011.