Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-02-08
Investigation of Six Array Geometries for Focused Array Hyperthermia Applications
By
Progress In Electromagnetics Research M, Vol. 23, 181-194, 2012
Abstract
The focusing properties of six array configurations in the form of square, square with interlaced elements, square ring, cross (+) shape, cross (X) shape, and square ring plus diagonals shape arrays are investigated. The performance parameters, such as field distribution in the focal region, size of the focal spot, depth of field, level of field at focal point, and sidelobe structure, are compared. Computer simulations using MTALAB environment are performed in the investigations. The square ring and square ring plus diagonals configurations show favorable focusing properties. The resultant field patterns will help to find the arrays usefulness for hyperthermia and imaging applications.
Citation
Khalil Sayidmarie, and Ahmed M. Abdulkhaleq, "Investigation of Six Array Geometries for Focused Array Hyperthermia Applications," Progress In Electromagnetics Research M, Vol. 23, 181-194, 2012.
doi:10.2528/PIERM12010605
References

1. Bogosanovic, M. and A. G. Williamson, "Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection," IEEE Trans. Instrum. Meas., Vol. 56, No. 6, 2186-2195, Dec. 2007.
doi:10.1109/TIM.2007.907954

2. Daniels, D. J., Ground Penetrating Radar, 2nd Edition, IET, 2004.
doi:10.1049/PBRA015E

3. Anderson, A. P., et al. "Feasibility of focused microwave array system for tumor irradiation," Electronics Letters, Vol. 15, No. 1, 564-565, 1979.
doi:10.1049/el:19790405

4. Durney, C. H. and M. F. Iskandar, "Antennas for medical applications," Antenna Hand Book: Theory, Applications, and Design, Ch. 24, Van Nostrand, New York, 1988.

5. Loane, J. T. and S. Lee, "Gain optimization of a near-field focusing array for hyperthermia applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, 1629-1635, Oct. 1989.
doi:10.1109/22.41011

6. Iero, D., Isernia, T., and A. F. Morabito, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

7. McSpaddan, J. O. and J. C. Mankins, "Space solar power programs and microwave wireless power transmission technology," IEEE Microwave Magazine, Vol. 3, No. 4, 46-57, Dec. 2002.
doi:10.1109/MMW.2002.1145675

8. Bennett, J. C., et al. "A novel radar array and its imaging properties," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 4, 567-574, 1979.
doi:10.1109/TAP.1979.1142137

9. Ismail, M. S. and K. H. Sayidmarie, "Investigation of three array geometries for focused array hyperthermia," Proceedings of ISAP ’92, Sapporo, Japan, 1992.

10. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph Chebyshev near-field design," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3813-3820, Dec. 2009.
doi:10.1109/TAP.2009.2033435

11. Buffi, A., A. A. Serra, P. Nepa, H-.T. Chou, and G. Manara, "A focused planar microstrip array for 2.4GHz RFID readers," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1536-1544, May 2010.
doi:10.1109/TAP.2010.2044331

12. Guo, T. C., et al. "A local field study of a water-immersed microwave antenna array for medical imagery and therapy," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 8, 844-854, 1984.
doi:10.1109/TMTT.1984.1132781

13. Sherman, J. W., "Properties of focused aperture in the Fresnel region," IRE Transactions on Antennas and Propagation, Vol. 10, No. 4, 399-408, Jul. 1962.
doi:10.1109/TAP.1962.1137900

14. Graham, W. J., "Analysis: And synthesis of axial field patterns of focused apertures," IEEE Transaction on Antennas and Propagation, Vol. 31, No. 4, Jul. 1983.