Vol. 39
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-03-02
Influence of Cellular Properties on the Electric Field Distribution Around a Single Cell
By
Progress In Electromagnetics Research B, Vol. 39, 141-161, 2012
Abstract
Electric fields have been widely used for the treatment of neurological diseases, using techniques such as non-invasive brain stimulation. An electric current controls cell excitability by imposing voltage changes across the cell membrane. At the same time, the presence of the cell itself causes a re-distribution of the local electric field. Computation of the electric field distribution at a single cell microscopic level is essential in understanding the mechanism of electric stimulation. In addition, the impact of the cellular biophysical properties on the field distribution in the vicinity of the cell should also be addressed. In this paper, we have begun by first computing the field distribution around and within a spherical model cell. The electric fields in the three regions differed by several orders of magnitude. The field intensity in the extracellular space was of the same order as that of the externally applied field, while in the membrane, it was calculated to be several thousand times greater than the applied field. In contrast, the field intensity inside the cell was greatly attenuated to approximately 1/133th of the applied field. We then performed a detailed analysis on the dependency of the local field distribution on both the electrical properties (i.e., conductivity, dielectricity), and the geometrical properties (i.e., size, membrane thickness) of the target cell. Variations of these parameters caused significant changes to the amplitude and direction of the electric field around a single cell. The biophysical mechanisms of such observations and their experimental implications are discussed. These results highlight the significance of considering cellular properties during the electric stimulation of neuronal tissues.
Citation
Hui Ye, Marija Cotic, Michael G. Fehlings, and Peter L. Carlen, "Influence of Cellular Properties on the Electric Field Distribution Around a Single Cell," Progress In Electromagnetics Research B, Vol. 39, 141-161, 2012.
doi:10.2528/PIERB11122705
References

1. Gross, R. E. and A. M. Lozano, "Advances in neurostimulation for movement disorders," Neurol. Res., Vol. 22, 247-58, Apr. 2000.

2. Ridding, M. C. and U. Ziemann, "Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects," J. Physiol, Vol. 588, 2291-2304, Jul. 1, 2010.
doi:10.1113/jphysiol.2010.190314

3. Chi, R. P. and A. W. Snyder, "Facilitate insight by non-invasive brain stimulation," PLoS One, Vol. 6, e16655, 2011.
doi:10.1371/journal.pone.0016655

4. Fedorov, A., Y. Chibisova, A. Szymaszek, M. Alexandrov, C. Gall, and B. A. Sabel, "Non-invasive alternating current stimulation induces recovery from stroke," Restor. Neurol. Neurosci., Vol. 28, 825-833, 2010.

5. Lee, D. C. and W. M. Grill, "Polarization of a spherical cell in a nonuniform extracellular electric field," Ann. Biomed. Eng., Vol. 33, 603-615, May 2005.
doi:10.1007/s10439-005-2397-3

6. Kotnik, T. and D. Miklavcic, "Analytical description of transmembrane voltage induced by electric fields on spheroidal cells," Biophys. J., Vol. 79, 670-679, Aug. 2000.
doi:10.1016/S0006-3495(00)76325-9

7. Fricke, H., "The electric permittivity of a dilute suspension of membrane-covered ellipsoids," J. Appl. Phys., Vol. 24, 644-646, 1953.
doi:10.1063/1.1721343

8. Schwan, H. P., "Electrical properties of tissue and cell suspensions," Adv. Biol. Med. Phys., Vol. 5, 147-209, 1957.

9. Kotnik, T., F. Bobanovic, and D. Miklavcic, "Sensitivity of transmembrane voltage induced by applied electric fields --- A theoretical analysis," Bioelectrochem. Bioenerg., Vol. 43, 285-291, 1997.
doi:10.1016/S0302-4598(97)00023-8

10. DeBruin, K. A. and W. Krassowska, "Modeling electroporation in a single cell. I. Effects of field strength and rest potential," Biophys. J., Vol. 77, 1213-1224, Sep. 1999.
doi:10.1016/S0006-3495(99)76973-0

11. DeBruin, K. A. and W. Krassowska, "Modeling electroporation in a single cell. II. Effects of ionic concentrations," Biophys. J., Vol. 77, 1225-1233, Sep. 1999.
doi:10.1016/S0006-3495(99)76974-2

12. Ye, H., M. Cotic, and P. L. Carlen, "Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation," J. Neural. Eng., Vol. 4, 283-293, Sep. 2007.
doi:10.1088/1741-2560/4/3/014

13. Gimsa, J. and D. Wachner, "Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells," Biophys. J., Vol. 81, 1888-1896, Oct. 2001.
doi:10.1016/S0006-3495(01)75840-7

14. Kotnik, T. and D. Miklavcic, "Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields," Biophys. J., Vol. 90, 480-491, Jan. 15, 2006.
doi:10.1529/biophysj.105.070771

15. Pavlin, M., N. Pavselj, and D. Miklavcic, "Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system," IEEE Trans. Biomed. Eng., Vol. 49, 605-612, Jun. 2002.
doi:10.1109/TBME.2002.1001975

16. Valic, B., M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissie, M. P. Rols, and D. Miklavcic, "Effect of electric field induced transmembrane potential on spheroidal cells: Theory and experiment," Eur. Biophys. J., Vol. 32, 519-528, Sep. 2003.
doi:10.1007/s00249-003-0296-9

17. Farkas, D. L., R. Korenstein, and S. Malkin, "Electrophotoluminescence and the electrical properties of the photosynthetic membrane. I. Initial kinetics and the charging capacitance of the membrane," Biophys. J., Vol. 45, 363-373, Feb. 1984.
doi:10.1016/S0006-3495(84)84160-0

18. Jerry, R. A., A. S. Popel, and W. E. Brownell, "Potential distribution for a spheroidal cell having a conductive membrane in an electric field," IEEE Trans. Biomed. Eng., Vol. 43, 970-972, Sep. 1996.
doi:10.1109/10.532132

19. Wachner, D., M. Simeonova, and J. Gimsa, "Estimating the subcellular absorption of electric field energy: Equations for an ellipsoidal single shell model," Bioelectrochemistry, Vol. 56, 211-213, May 15, 2002.
doi:10.1016/S1567-5394(02)00020-8

20. Faber, D. S. and H. Korn, "Field effects trigger post-anodal rebound excitation in vertebrate CNS," Nature, Vol. 305, 802-804, Oct. 27--Nov. 2, 1983.
doi:10.1038/305802a0

21. Dudek, F. E., T. Yasumura, and J. E. Rash, "`Non-synaptic' mechanisms in seizures and epileptogenesis," Cell Biol. Int., Vol. 22, 793-805, Nov. 1998.
doi:10.1006/cbir.1999.0397

22. Rattay, F., "Analysis of the electrical excitation of CNS neurons," IEEE Trans. Biomed. Eng., Vol. 45, 766-772, Jun. 1998.
doi:10.1109/10.678611

23. McIntyre, C. C., W. M. Grill, D. L. Sherman, and N. V. Thakor, "Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition," J. Neurophysiol., Vol. 91, 1457-1469, Apr. 2004.
doi:10.1152/jn.00989.2003

24. Gimsa, U., U. Schreiber, B. Habel, J. Flehr, U. van Rienen, and J. Gimsa, "Matching geometry and stimulation parameters of electrodes for deep brain stimulation experiments --- Numerical considerations," J. Neurosci. Methods, Vol. 150, 212-227, Jan. 30, 2006.
doi:10.1016/j.jneumeth.2005.06.013

25. Sukharev, S. I., V. A. Klenchin, S. M. Serov, L. V. Chernomordik, and A. Chizmadzhev Yu, "Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores," Biophys. J., Vol. 63, 1320-1327, Nov. 1992.
doi:10.1016/S0006-3495(92)81709-5

26. Kinosita, Jr., K. and T. Y. Tsong, "Voltage-induced pore formation and hemolysis of human erythrocytes," Biochim. Biophys. Acta, Vol. 471, 227-242, Dec. 1, 1977.

27. Somiari, S., J. Glasspool-Malone, J. J. Drabick, R. A. Gilbert, R. Heller, M. J. Jaroszeski, and R. W. Malone, "Theory and in vivo application of electroporative gene delivery," Mol. Ther., Vol. 2, 178-187, Sep. 2000.
doi:10.1006/mthe.2000.0124

28. Yousif, N., R. Bayford, and X. Liu, "Revealing the biophysical mechanism for configuring electrode contacts in deep brain stimulation," Sixteenth Annual Computational Neuroscience Meeting: CNS*2007, P143 Toronto, Canada, 2007.

29. Mossop, B. J., R. C. Barr, J. W. Henshaw, and F. Yuan, "Electric fields around and within single cells during electroporation --- a model study," Ann. Biomed. Eng., Vol. 35, 1264-1275, Jul. 2007.
doi:10.1007/s10439-007-9282-1

30. Mossop, B. J., R. C. Barr, D. A. Zaharoff, and F. Yuan, "Electric fields within cells as a function of membrane resistivity --- A model study," IEEE Trans. Nanobioscience, Vol. 3, 225-231, Sep. 2004.
doi:10.1109/TNB.2004.833703

31. Bryant, G. and J. Wolfe, "Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields," J. Membr. Biol., Vol. 96, 129-139, 1987.
doi:10.1007/BF01869239

32. Pucihar, G., T. Kotnik, B. Valic, and D. Miklavcic, "Numerical determination of transmembrane voltage induced on irregularly shaped cells," Ann.Biomed. Eng., Vol. 34, 642-652, Apr. 2006.
doi:10.1007/s10439-005-9076-2

33. Vigmond, E. J., J. L. Perez Velazquez, T. A. Valiante, B. L. Bardakjian, and P. L. Carlen, "Mechanisms of electrical coupling between pyramidal cells," J. Neurophysiol, Vol. 78, 3107-3116, Dec. 1997.

34. Loew, L. M., "Voltage-sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields," Bioelectromagnetics, Vol. 1, 179-189, 1992.
doi:10.1002/bem.2250130717

35. Ghai, R. S., M. Bikson, and D. M. Durand, "Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices," J. Neurophysiol, Vol. 84, 274-280, Jul. 2000.

36. Grill, Jr., W. M., "Modeling the effects of electric fields on nerve fibers: Influence of tissue electrical properties," IEEE Trans. Biomed. Eng., Vol. 46, 918-928, Aug. 1999.
doi:10.1109/10.775401

37. Sotiropoulos, S. N. and P. N. Steinmetz, "Assessing the direct effects of deep brain stimulation using embedded axon models," J. Neural. Eng., Vol. 4, 107-119, Jun. 2007.
doi:10.1088/1741-2560/4/2/011

38. Gehl, J., "Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research," Acta Physiol. Scand., Vol. 177, 437-447, Apr. 2003.
doi:10.1046/j.1365-201X.2003.01093.x

39. Ehrenberg, B., D. L. Farkas, E. N. Fluhler, Z. Lojewska, and L. M. Loew, "Membrane potential induced by external electric field pulses can be followed with a potentiometric dye," Biophys. J., Vol. 51, 833-837, May 1987.
doi:10.1016/S0006-3495(87)83410-0

40. Teruel, M. N. and T. Meyer, "Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells," Biophys. J., Vol. 73, 1785-1796, Oct. 1997.
doi:10.1016/S0006-3495(97)78209-2

41. Holsheimer, J., "Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis," Exp. Brain Res., Vol. 67, 402-410, 1987.
doi:10.1007/BF00248560

42. Tyner, K. M., R. Kopelman, and M. A. Philbert, "Nanosized voltmeter enables cellular-wide electric field mapping," Biophys. J., Vol. 93, 1163-1174, Aug. 15, 2007.
doi:10.1529/biophysj.106.092452

43. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.