Vol. 30
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-03-01
Push-Push Dielectric Resonator Oscillator Using Substrate Integrated Waveguide Power Combiner
By
Progress In Electromagnetics Research Letters, Vol. 30, 105-113, 2012
Abstract
A novel Ku-band push-push dielectric resonator oscillator (DRO) using substrate integrated waveguide (SIW) power combiner is presented. Compared with the traditional push-push oscillator, the proposed push-push DRO can realize high fundamental harmonic suppression, due to the use of a SIW power combiner, whose cut-off frequency is designed within the range of the fundamental and second harmonic frequency. Moreover, the isolation of two fundamental frequency oscillators can be enhanced, while the power combiner operates at the second harmonic frequency to maximize the output power. As shown in the experimental results, the centre frequency of push-push DRO is 14 GHz, with a frequency tuning range of 30 MHz. The suppression of the fundamental frequency is 28.59 dBc while the third harmonic suppression is 22.54 dBc, respectively. Furthermore, the phase noise can achieve -98.01 dBc/Hz at 100 kHz offset from the centre frequency.
Citation
Ping Su, Zong-Xi Tang, and Biao Zhang, "Push-Push Dielectric Resonator Oscillator Using Substrate Integrated Waveguide Power Combiner," Progress In Electromagnetics Research Letters, Vol. 30, 105-113, 2012.
doi:10.2528/PIERL11122302
References

1. Sinnesbichler, F. X., "Hybrid millimeter-wave push-push oscillators using silicon-germanium HBTs," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 2, 422-430, 2006.
doi:10.1109/TMTT.2002.807836

2. Xia, Q., Z. X. Tang, and B. Zhang, "A Ku-band push-push dielectric resonator oscillator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1859-1866, 2010.

3. Pavio, A. M. and M. A. Smith, "A 20--40 GHz push-push dielectric resonator oscillator," IEEE Trans. on Microw. Theory and Tech., Vol. 33, No. 12, 1346-1349, 1985.
doi:10.1109/TMTT.1985.1133224

4. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 2, 593-596, 2003.
doi:10.1109/TMTT.2002.807820

5. Lin, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB Vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503

6. Zhang, Q.-L., W.-Y. Yin, S. He, and L.-S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

7. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, 2004.

8. Germain, S., D. Deslandes, and K.Wu, "Development of substrate integrated waveguide power dividers," Canadian Conference on Electrical and Computer Engineering, IEEE CCECE, Vol. 3, 1921-1924, Canada, 2003.

9. Hirokawa, J., K. Sakurai, M. Ando, and N. Goto, "An analysis of a waveguide T junction with an inductive post," IEEE Trans. on Microw. Theory and Tech., Vol. 39, No. 3, 563-566, 1991.
doi:10.1109/22.75301

10. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303