1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
2. Enoch, S., G. Tayeb, P. Sabouroux, and P. Vincont, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, 2002.
3. Edwards, B., A. Alµu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, 033903, 2008.
4. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.
5. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of e®ective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.
6. Jin, Y. and S. He, "Enhancing and suppressing radiation with some permeability-near-zero structures," Opt. Express, Vol. 18, 16587-16593, 2010.
7. Wu, Z., B.-Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
8. Pu, T. L., K. M. Huan, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1207-1217, 2010.
9. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
10. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
11. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nature Comm., Vol. 1, 21, 2010.
12. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by lc-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
13. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
14. Gaillot, D. P., C. Croenne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express, Vol. 16, 3986-3992, 2008.
15. Ma, H., S. Qu, Z. Xu, and J. Wang, "Approximation approach of designing practical cloaks with arbitrary shapes," Opt. Express, Vol. 16, 15449-15454, 2008.
16. Agarwal, K., X. Chen, L. Hu, H. Liu, and G. Uhlmann, "Polarization-invariant directional cloaking by transformation optics," Progress In Electromagnetics Research, Vol. 118, 415-423, 2011.
17. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
18. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009.
19. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagneticwaves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.
20. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nature Comm., Vol. 2, 176, 2011.
21. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 2011.
22. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
23. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
24. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Comm., Vol. 1, 124, 2011.
25. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
26. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
27. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
28. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
29. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
30. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
31. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design ---Theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, 2572-2581, 2003.
32. Chen, H., L.-X. Ran, B.-I.Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
33. Chen, H., L.-X. Ran, J. T. Huang-Fu, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
34. Yao, H.-Y., X.Wei, L.-W. Li, Q.Wu, and T.-S. Yeo, "Propagation property analysis of metamaterial constructed by conductive srrs and wires using the mgs-based algorithm," IEEE Trans. Microw. Theory Tech., Vol. 53, 1469, 2005.
35. Carbonell, J., L. A. Borja, E. V. Boria, and D. Lippens, "Duality and superposition in split-ring-resonator-loaded planar transmission lines," IEEE Antennas Wireless Propag. Lett., Vol. 8, 886-889, 2009.
36. Zhou, L., X. Huang, Y. Zhang, and S.-T. Chui, "Resonance properties of metallic ring systems," Mater. Today, Vol. 12, 52-59, 2009.
37. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nat. Photon., Vol. 5, 523-530, 2011.
38. Gil, I., J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett., Vol. 40, 1347-1348, 2004.
39. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
40. Park, W.-Y. and S. Lim, "Bandwidth tunable and compact band-pass filter (BPF) using complementary split ring resonators (CSRRs) on substrate integrated waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2407-2417, 2010.
41. Chen, H., B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 053509, 2006.
42. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.
43. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
44. Chen, H.-T., J. F. O'Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon., Vol. 2, 295-298, 2008.
45. Zhang, F., Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett., Vol. 92, 193104, 2008.
46. Lee, , S.-W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of materials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.
47. Khoo, I. C., "Nonlinear optics of liquid crystalline materials," Phys. Rep., Vol. 471, 221-267, 2009.
48. Liu, Q., Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, "Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic °uids for tunable bulk metamaterial applications," Nano. Lett., Vol. 10, 1347-1353, 2010.
49. Houzet, G., X. Melique, D. Lippens, L. Burgnies, G. Velu, and J.-C. Carru, "Microstrip transmission line loaded by split-ring resonators tuned by ferroelectric thin film," Progress In Electromagnetics Research C, Vol. 12, 225-236, 2010.
50. Shen, N., M. Massaouti, M. Gokkavas, J. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, "Optically implemented broadband blueshift switch in the terahertz regime," Phys. Rev. Lett., Vol. 106, 037403, 2011.
51. Gay-Balmaz, P. and J. F. O. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys., Vol. 92, 2929-2936, 2002.
52. Liu, N. and H. Giessen, "Coupling effects in optical metamaterials," Angew. Chem. Int. Ed., Vol. 49, 9838-9852, 2008.
53. Liu, N., H. Liu, S. N. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157-162, 2009.
54. Feth, N., M. Konig, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, "Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation," Opt. Express, Vol. 18, 6545-6554, 2010.
55. Sersic, I., M. Frimmer, E. Verhagen, and A. F. Koenderink, "Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays," Phys. Rev. Lett., Vol. 103, 213902, 2010.
56. Decker, M., S. Linden, and M. Wegener, "Coupling effect in low-symmetry planar split-ring resonator arrays," Opt. Lett., Vol. 34, 1579-1581, 2009.
57. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, 18131-18144, 2008.
58. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.
59. Hesmer, F., E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Stat. Sol., Vol. 244, 1170-1175, 2007.
60. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater., Vol. 19, 3628-3632, 2007.
61. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.