Vol. 125
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-07
Goal-Oriented Self-Adaptive Hp-Strategies for Finite Element Analysis of Electromagnetic Scattering and Radiation Problems
By
Progress In Electromagnetics Research, Vol. 125, 459-482, 2012
Abstract
In this paper, a fully automatic goal-oriented hp-adaptive finite element strategy for open region electromagnetic problems (radiation and scattering) is presented. The methodology leads to exponential rates of convergence in terms of an upper bound of an user-prescribed quantity of interest. Thus, the adaptivity may be guided to provide an optimal error, not globally for the field in the whole finite element domain, but for specific parameters of engineering interest. For instance, the error on the numerical computation of the S-parameters of an antenna array, the field radiated by an antenna, or the Radar Cross Section on given directions, can be minimized. The efficiency of the approach is illustrated with several numerical simulations with two dimensional problem domains. Results include the comparison with the previously developed energy-norm based hp-adaptivity.
Citation
Ignacio Gomez-Revuelto, Luis E. Garcia-Castillo, and Magdalena Salazar-Palma, "Goal-Oriented Self-Adaptive Hp-Strategies for Finite Element Analysis of Electromagnetic Scattering and Radiation Problems," Progress In Electromagnetics Research, Vol. 125, 459-482, 2012.
doi:10.2528/PIER11121606
References

1. Rheinboldt, W. C. and I. Babuška, "Error estimates for adaptive finite element computations," SIAM Journal of Numerical Analysis, Vol. 15, 736-754, 1978.
doi:10.1137/0715001

2. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.

3. Salazar-Palma, M., T. K. Sarkar, L. E. García-Castillo, T. Roy, and A. R. Djordjevic, Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling, Artech House Publishers, Inc., 1998.

4. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

5. Tian, J., Z. Q. Lv, X. W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite finite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

6. Borouchaki, H., T. Grosges, and D. Barchiesi, "Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation," Finite Elements in Analysis and Design, Vol. 46, 84-95, 2010.
doi:10.1016/j.finel.2009.06.026

7. Mitchell, W. F. and M. A. McClain, "A comparison of hp-adaptive strategies for elliptical partial differential equations," Tech. Rep. NISTIR-7824, National Institute of Standards and Technology (NIST), 2011.

8. Botha, M. M. and D. B. Davidson, "P-adaptive FE-BI analysis of homogeneous, lossy regions for SAR- and far-field calculations," IEEE Antennas and Propagation Society International Symposium Digest, 684-687, Institute of Electrical and Electronics Engineer, Columbus, Ohio, USA, 2003.

9. Nair, D. and J. P. Webb, "P-adaptive computation of the scattering parameters of 3-D microwave devices," IEEE Transactions on Magnetics, Vol. 40, No. 2, 1428-1431, 2004.
doi:10.1109/TMAG.2004.824572

10. Ren, Z. and N. Ida, "Solving 3D eddy current problems using second order nodal and edge elements," IEEE Transactions on Magnetics, Vol. 36, No. 4, 746-749, 2000.
doi:10.1109/20.877555

11. Andersen, L. S. and J. L. Volakis, "Adaptive multiresolution antenna modeling using hierarchical mixed-order tangential vector finite elements," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 2, 211-222, 2001.
doi:10.1109/8.914280

12. Sheng, Y., R. Chen, and X. Ping, "An efficient p-version multigrid solver for fast hierarchical vector finite element analysis," Finite Elements in Analysis and Design, Vol. 44, 732-727, 2008.
doi:10.1016/j.finel.2008.04.004

13. Ledger, P. D., K. Morgan, J. Peraire, O. Hassan, and N. P. Weatherill, "The development of an hp-adaptive finite element procedure for electromagnetic scattering problems," Finite Elements in Analysis and Design, Vol. 39, 751-764, 2003.
doi:10.1016/S0168-874X(03)00057-X

14. Ingelstróm, P., V. Hill, and R. Dyczij-Edlinger, "Goal-oriented error estimates for hp-adaptive solutions of the time-harmonic Maxwell's equations," IEEE/ACES Int. Conf. Wireless Communications and Applied Computational Electromagnetics, 396, 2006.

15. Rachowicz, W. and A. Zdunek, "An hp-adaptive finite element method for scattering problems in computational electromagnetics," International Journal for Numerical Methods in Engineering, Vol. 62, No. 9, 1226-1249, 2004.
doi:10.1002/nme.1227

16. Zdunek, A., W. Rachowicz, and N. Sehlstedt, "Toward hp-adaptive solution of 3D electromagnetic scattering from cavities," Computer and Mathematics with Applications, Vol. 49, 23-38, 2005.
doi:10.1016/j.camwa.2005.01.003

17. Oden, J. and S. Prudhomme, "Goal-oriented error estimation and adaptivity for the finite element method," Computer and Mathematics with Applications, Vol. 41, No. 5--6, 735-756, 2001.
doi:10.1016/S0898-1221(00)00317-5

18. Sun, D. K., Z. Csendes, and J.-F. Lee, "Adaptive mesh refinement, h-version, for solving multiport microwave devices in three dimensions," IEEE Transactions on Magnetics, Vol. 36, No. 4, 1596-1599, 2000.
doi:10.1109/20.877745

19. Ingelstróm, P. and A. Bondeson, "Goal-oriented error-estimation for S-parameter computations," IEEE Transactions on Magnetics, Vol. 40, No. 2, 1432-1435, 2004.
doi:10.1109/TMAG.2004.824606

20. García-Castillo, L. E., D. Pardo, and L. F. Demkowicz, "Energynorm based and goal-oriented automatic hp adaptivity for electromagnetics: Application to the analysis of H-plane and E-plane rectangular waveguide discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, Part 2, 3039--3049, 2008, doi:10.1109/TMTT.2008.2007096.

21. Nguyen, D. T., J. Qin, M. I. Sancer, and R. McClary, "Finite element-boundary integral methods in electromagnetics," Finite Elements in Analysis and Design, Vol. 38, No. 5, 391-400, 2002.
doi:10.1016/S0168-874X(01)00066-X

22. Gómez-Revuelto, I., L. E. García-Castillo, D. Pardo, and L. F. Demkowicz, "A two-dimensional self-adaptive hp finite element method for the analysis of open region problems in electromagnetics," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1337-1340, 2007.
doi:10.1109/TMAG.2007.892413

23. Zdunek, A. and W. Rachowicz, "A goal-oriented hp-adaptive finite element approach to radar scattering problems," Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 2--5, 657-674, 2005.
doi:10.1016/j.cma.2004.05.026

24. Gomez-Revuelto, I., L. E. Garcia-Castillo, D. Pardo, and J. Kurtz, "Automatic hp adaptivity for three dimensional closed domain electrodynamic problems," 10th International Workshop on Finite Elements for Microwave Engineering, New England, USA, 2010.

25. Gomez-Revuelto, I., L. E. Garcia-Castillo, D. Pardo, J. Kurtz, and M. Salazar-Palma, "Automatic hp-adaptivity for three dimensional electromagnetic problems. application to waveguide problems," Higher Order Finite Element and Isogeometric Methods, Cracow, Poland, 2011.

26. Demkowicz, L., Computing with Hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC Press, 2007.
doi:10.1201/9781420011692

27. Demkowicz, L. F. and A. Buffa, "H1, H and H(div)-conforming projection-based interpolation in three dimensions. Quasi optimal p-interpolation estimates," Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 24, 4816-4842, see also ICES Report 04-22, 2006.

28. Quarteroni, A. and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, 1999.

29. MUMPS Solver, http://www.enseeiht.fr/lima/apo/MUMPS/.

30. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

31. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

32. Garcia-Doñoro, D., L. E. García-Castillo, and I. Gómez-Revuelto, "An interface between an hp-adaptive finite element package and the pre- and post-processor GiD," Finite Elements in Analysis and Design, Vol. 46, No. 4, 328-338.
doi:10.1016/j.finel.2009.11.005

33. Babuñka, I. and B. Guo, "Approximation properties of the hp-version of the finite element method," Computer Methods in Applied Mechanics and Engineering, Vol. 133, 319-346, 1996.
doi:10.1016/0045-7825(95)00946-9