Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-02-08
3D Imaging Method for Stepped Frequency Ground Penetrating Radar Based on Compressive Sensing
By
Progress In Electromagnetics Research M, Vol. 23, 153-165, 2012
Abstract
Long data collecting time is one of the bottlenecks of the stepped-frequency continuous-wave ground penetrating radar (SFCW-GPR). We discuss the applicability of the Compressive Sensing (CS) method to three dimensional buried point-like targets imaging for SFCW-GPR. It is shown that the image of the sparse targets can be reconstructed by solving a constrained convex optimization problem based on l1norm} minimization with only a small number of data from randomly selected frequencies and antenna scan positions, which will reduce the data collecting time. Target localization ability, performance in noise, the effect of frequency bandwidth, and the effect of the wave travel velocity in the soil are demonstrated by simulated data. Numerical results show that the presented CS method can reconstruct the point-like targets in the right position even with 10% additive Gaussian white noise and some wave travel velocity estimation error. p
Citation
Ji-Liang Cai, Chuang-Ming Tong, Wei-Jun Zhong, and Wei-Jie Ji, "3D Imaging Method for Stepped Frequency Ground Penetrating Radar Based on Compressive Sensing," Progress In Electromagnetics Research M, Vol. 23, 153-165, 2012.
doi:10.2528/PIERM11121206
References

1. Grandjean, G., J. Gourry, and A. Bitri, "Evaluation of GPR techniques for civil-engineering applications: Study on a test site," J. Appl. Geophys., Vol. 45, No. 3, 141-156, 2000.
doi:10.1016/S0926-9851(00)00021-5

2. Feng, X. and M. Sato, "Pre-stack migration applied to GPR for landmine detection," Inverse Prob., Vol. 20, 99-115, 2004.
doi:10.1088/0266-5611/20/6/S07

3. Groenenboom, J. and A. Yarovoy, "Data processing and imaging in GPR system dedicated for landmine detection," Subsurf. Sens. Technol. Appl., Vol. 3, No. 4, 387-402, 2002.
doi:10.1023/A:1020321632316

4. Hubbard, S., C. Jinsong, K. Williams, Y. Rubin, and J. Peterson, "Environmental and agricultural applications of GPR," Proc. 3rd Int. Workshop on Adv. Ground Penetrating Radar, 45-49, 2005.
doi:10.1109/AGPR.2005.1487843

5. Daniels, D., Ground Penetrating Radar, 2nd edition, London, UK, 2004.
doi:10.1049/PBRA015E

6. Counts, T., A. C. Gurbuz, W. R. Scott, Jr., J. H. McClellan, and K. Kangwook, "Multistatic ground-penetrating radar experiments," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2544-2553, Aug. 2007.
doi:10.1109/TGRS.2007.900677

7. Lopera, O., E. C. Slob, N. Milisavljevic, and S. Lambot, "Filtering soil surface and antenna effects from GPR data to enhance landmine detection," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 3, 707-717, 2007.
doi:10.1109/TGRS.2006.888136

8. Fang, G.-Y. and M. Sato, "Stepped frequency ground penetrating radar and its application for landmine detection," Acta Electronica Sinica, Vol. 33, No. 3, 436-439, 2005.

9. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "A compressive sensing data acquisition and imaging method for stepped frequency GPRs," IEEE Transactions on Signal Processing, Vol. 57, No. 7, 2640-2650, 2009.
doi:10.1109/TSP.2009.2016270

10. Donoho, D. L., "Compressive sensing," IEEE Trans. on Information. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

11. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proc. IEEE Radar Conf., 128-133, 2007.

12. Yu., H.-M. and Y. Fang, "Research on compressive sensing based 3D imaging method applied to ground penetrating radar," Journal of Electronics & Information Technology, Vol. 32, No. 1, 12-16, 2010.
doi:10.3724/SP.J.1146.2009.00040

13. Huang, Q., L. Qu, B. Wu, and G. Fang, "UWB through-wall imaging based on compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1408-1415, 2010.
doi:10.1109/TGRS.2009.2030321

14. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

15. Zhang, L., M. Xing, C. Qiu, et al. "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584

16. Candes, E. J. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, 2130, Mar. 2008.

17. Johansson, E. M. and J. E. Mast, "Three dimensional ground penetrating radar imaging using a synthetic aperture time-domain focusing," Proc. SPIE Conf. Adv. Microw. Millimeter Wave Detectors, Vol. 2275, 205-214, 1994.

18. Candes, E. and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," Ann. Statist., Vol. 35, No. 6, 2313-2351, 2007.
doi:10.1214/009053606000001523

19. Tuncer, M. A. C. and A. C. Gurbuz, "Ground reflection removal in compressive sensing ground penetrating radars," IEEE Geoscience and Remote Sensing Letters, 2011.

20. Picardi, M., "Background subtraction techniques - A review," Proc. IEEE Int. Conf. Syst. Man. Cybern., 3099-3104, Oct. 10-13, 2004.

21. Mayordomo, A. M. and A. Yarovoy, "Optimal background subtraction in GPR for humanitarian demining," Proc. 5th Eur. Radar Conf., 48-51, Oct. 2008.

22. Grant, M. and S. Boyd, , CVX: Matlab Software for Disciplined Convex Programming (Web Page and Software), 2011, Available: http://stanford.edu/ boyd/cvx..