Vol. 30
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-21
Terahertz Interferometer for Integrated Goubau-Line Waveguides
By
Progress In Electromagnetics Research Letters, Vol. 30, 49-58, 2012
Abstract
An integrated Terahertz {Mach-Zehnder} interferometer is presented in order to perform differential measurements in a chip. Both simulation and experiment are performed for validating the interferometer structure. Destructive interference peaks are observed, and destructive frequencies are predicted by a mathematical model with a good agreement. The structure is then used to characterize dielectric constant of materials. Simulation results enable to quantify the device sensitivity. An experimental validation is given with the characterization of a thermosensitive polymer (Cyclotene BCB) in the sub-THz frequency band. Perspectives to increase investigated frequencies are discussed.
Citation
Simon Laurette, Anthony Treizebre, Nour-Eddine Bourzgui, and Bertrand Bocquet, "Terahertz Interferometer for Integrated Goubau-Line Waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 49-58, 2012.
doi:10.2528/PIERL11121205
References

1. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
doi:10.1038/nphoton.2007.3

2. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 10, 2438-2447, 2004.
doi:10.1109/TMTT.2004.835916

3. Heh, D. Y. and E. L. Tan, "Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental ADI-FDTD method," Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012.
doi:10.2528/PIERB11090905

4. Markelz, A. G., "Terahertz dielectric sensitivity to biomolecular structure and function," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, No. 1, 180-190, 2008.
doi:10.1109/JSTQE.2007.913424

5. Born, B. and M. Havenith, "Terahertz dance of proteins and sugars with water," Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, No. 12, 1245-1254, Dec. 2009.

6. Matvejev, V., C. De Tandt, W. Ranson, J. Stiens, R. Vounckx, and D. Mangelings, "Integrated waveguide structure for highly sensitive thz spectroscopy of nano-liter liquids in capillary tubes," Progress In Electromagnetics Research, Vol. 121, 89-101, 2011.
doi:10.2528/PIER11090102

7. Wang, K. L. and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature, Vol. 432, No. 7015, 376-379, 2004.
doi:10.1038/nature03040

8. Treizebre, A. and B. Bocquet, "Nanometric metal wire as a guide for THz investigation of living cells," International Journal of Nanotechnology, Vol. 5, No. 6--8, 784-795, 2008.
doi:10.1504/IJNT.2008.018697

9. Laurette, S., A. Treizebre, and B. Bocquet, "Co-integrated microfluidic and THz functions for biochip devices," Journal of Micromechanics and Microengineering, Vol. 21, No. 6, 065029, 2011.
doi:10.1088/0960-1317/21/6/065029

10. Abbas, A., A. Treizebre, P. Supiot, N. E. Bourzgui, D. Guillochon, D. Vercaigne-Marko, and B. Bocquet, "Cold plasma functionalized terahertz biomems for enzyme reaction analysis," Biosensors & Bioelectronics, Vol. 25, No. 1, 154-160, 2009.
doi:10.1016/j.bios.2009.06.029

11. Laurette, S., A. Treizebre, F. Affouard, and B. Bocquet, "Subterahertz characterization of ethanol hydration layers by microfluidic system," Applied Physics Letters, Vol. 97, No. 11, 111904, 2010.
doi:10.1063/1.3488832

12. Treizebre, A., B. Bocquet, Y. S. Xu, and R. G. Bosisio, "New THz excitation of planar Goubau line," Microwave and Optical Technology Letters, Vol. 50, No. 11, 2998-3001, 2008.
doi:10.1002/mop.23850

13. Treizebre, A., M. Hofman, and B. Bocquet, "Terahertz spiral planar Goubau line rejectors for biological characterization," Progress In Electromagnetics Research M, Vol. 14, 163-176, 2010.
doi:10.2528/PIERM10072110

14. Xu, Y., C. Nerguizian, and R. G. Bosisio, "Wideband planar Goubau line integrated circuit components at millimetre waves," IET Microwaves Antennas & Propagation, Vol. 5, No. 8, 882-885, 2011.
doi:10.1049/iet-map.2010.0025

15. Treizebre, A., S. Laurette, Y. Xu, R. G. Bosisio, and B. Bocquet, "THz power divider circuits on planar Goubau lines (PGLS)," Progress In Electromagnetics Research C, Vol. 26, 219-228, 2012.
doi:10.2528/PIERC11112409

16. Dazhang, L., J. Cunningham, M. B. Byrne, S. Khanna, C. D. Wood, A. D. Burnett, S. M. Ershad, E. H. Linfield, and A. G. Davies, "On-chip terahertz Goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors," Applied Physics Letters, Vol. 95, No. 9, 092903, 2009.
doi:10.1063/1.3216579

17. Sepulveda, B., J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, "Optical biosensor microsystems based on the integration of highly sensitive machzehnder interferometer devices," Journal of Optics A: Pure and Applied Optics, Vol. 8, No. 7, S561-S566, 2006.
doi:10.1088/1464-4258/8/7/S41

18. Lapsley, M. I., I. K. Chiang, Y. B. Zheng, X. Y. Ding, X. L. Mao, and T. J. Huang, "A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection," Lab on A Chip, Vol. 11, No. 10, 1795-1800, 2011.
doi:10.1039/c0lc00707b

19. CYCLOTENE Advanced Electronic Resins Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins, DOW, 2005.

20. Wilkinson, E. J., "An n-way hybrid power divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 8, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668