Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-30
A Methodology to Study the Electromagnetic Behavior of a Cryogenic Metallic System Used to Control the Ratchet Effect
By
Progress In Electromagnetics Research M, Vol. 23, 123-137, 2012
Abstract
We introduce an electromagnetic investigation of the complex experimental setup used in studying the Ratchet Effect at low We introduce an electromagnetic investigation of the complex experimental setup used in studying the Ratchet Effect at low temperature. This investigation, based on intensive electromagnetic simulations, shows that a compromise has to be taken into consideration between the physical aspects, the technological and the practical restrictions as well as the electromagnetic conditions of the observed phenomenon. By improving the electromagnetic response of the whole system, the Ratchet induced photovoltage can be increased, and hence the Ratchet device can be used for practical applications in wireless communications.
Citation
Dina Medhat, Alexandru Takacs, and Herve Aubert, "A Methodology to Study the Electromagnetic Behavior of a Cryogenic Metallic System Used to Control the Ratchet Effect," Progress In Electromagnetics Research M, Vol. 23, 123-137, 2012.
doi:10.2528/PIERM11120606
References

1. Feynman, R. P., Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1, Ch. 46, Addison Wesley, 1963.

2. Sassine, S., "Transport electronique controle par micro-ondes dans des microstructures asymetriques: Effet ratchet mesoscopique,", Ph.D. Dissertation, University Toulouse, France, 2007.
doi:10.1103/PhysRevB.78.045431

3. Sassine, S., Y. Krupko, J.-C. Portal, Z. D. Kvon, R. Murali, K. P. Martin, G. Hill, and A. D. Wieck, "Experimental investigation of the ratchet effect in a two-dimensional electron system with broken spatial inversion symmetry," Phys. Rev. B, Vol. 78, No. 4, 045431.1-045431.5, 2008.
doi:10.1016/j.ssc.2007.04.026

4. Sassine, S., Y. Krupko, E. B. Olshanetsky, Z. D. Kvon, J. C. Portal, J. M. Hartmann, and J. Zhang, "Microwave radiation induced collective response in Si/SiGe heterostructures with a 2D electron gas," Solid State Communications, Vol. 142, No. 11, 631-633, 2007.

5. Bisotto, I., E. S. Kannan, S. Sassine, R. Murali, T. J. Beck, L. Jal- abert, and J.-C. Portal, "Microwave based nanogenerator using the ratchet effect in Si/SiGe heterostructures," Nanotechnology Journal, Vol. 22, No. 24, 245401.1-245401.6, 2011.
doi:10.1063/1.3590255

6. Kannan, E. S., I. Bisotto, J.-C. Portal, R. Murali, and T. J. Beck, "Photovoltage induced by ratchet effect in Si/SiGe heterostructures under microwave irradiation," Appl. Phys. Lett., Vol. 98, No. 19, 193505.1-193505.3, 2011.
doi:10.1140/epjb/e2007-00127-2

7. Chepelianskii, A. D., M. V. Entin, L. I. Magarill, and D. L. She- pelyansky, "Photogalvanic current in artificial asymmetric nanostructures," Eur. Phys. J. B, Vol. 56, No. 4, 323-333, 2007.
doi:10.1063/1.3507896

8. Drexler, C., V. V. Bel'kov, B. Ashkinadze, P. Olbrich, C. Zoth, V. Lechner, Y. V.Terent'ev, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, D. Schuh, W. Wegscheider, and S. D. Ganichev, "Spin polarized electric currents in semiconductor heterostructures induced by microwave radiation," Appl. Phys. Lett., Vol. 97, No. 18, 182107.1-182107.3, 2010.
doi:10.1103/PhysRevB.77.245304

9. Weber, W., L. E. Golub, S. N. Danilov, J. Karch, C. Reit- maier, B. Wittmann, V. V. Bel'kov, E. L. Ivchenko, Z. D. Kvon, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganicheva, "Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures," Phys. Rev. B, Vol. 77, No. 24, 245304.12-245304.1, 2008.
doi:10.1103/PhysRevLett.103.090603

10. Olbrich, P., E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D. Ganichev, "Ratchet Effects induced by terahertz radiation in heterostructures with a lateral periodic potential," Phys. Rev. Lett., Vol. 103, No. 9, 090603.1-090603.4, 2009.
doi:10.1103/PhysRevB.71.052508

11. Chepelianskii, A. D. and D. L. Shepelyansky, "Directing transport by polarized radiation in the presence of chaos and dissipation," Phys. Rev. B, Vol. 71, No. 5, 052508.1-052508.4, 2005.
doi:10.1103/PhysRevE.78.041127

12. Chepelianskii, A. D., M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, "Ratchet transport of interacting particles," Phys. Rev. E, Vol. 78, No. 4, 041127.1-041127.8, 2008.
doi:10.1385/CBB:38:2:191

13. Ait-Haddou, R. and W. Herzog, "Brownian Ratchet models of molecular motors," Cell Biochemistry and Biophysics, Vol. 38, No. 2, 191-213, 2003.
doi:10.1103/PhysRevLett.96.154502

14. Linke, H., B. J. Aleman, L. D. Melling, M. J. Taormina, M. J. Francis, C. C. Dow-Hygelund, V. Narayanan, P. Taylor, and A. Stout, "Self-propelled leidenfrost droplets," Phys. Rev. Lett., Vol. 96, No. 15, 154502.1-154502.4, 2006.
doi:10.1007/s003390201334

15. Song, A. M., "Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry," Appl. Phys. A, Vol. 75, No. 2, 229-235, 2002.

16. Medhat, D., A. Takacs, and H. Aubert, "Optimum position of the two-dimensional electron gas sample in the cryogenic metallic cavity system used in studying Ratchet Effect," Proceedings of the European Microwave Conference EuMC, 964-967, Manchester, Oct. 2011.

17., Ansoft HFSS v.12, www.ansoft.com..

18. Medhat, D., A. Takacs, H. Aubert, and J.-C. Portal, "Comparative analysis of different techniques for controlling Ratchet Effect in a periodic array of asymmetric antidots," Proceedings of the Asia Pacific Microwave Conference APMC, 1711-1714, Singapore, Dec. 2009.

19. Takacs, A., D. Medhat, H. Aubert, and J. C. Portal, "Electromagnetic analysis of the experimental setup used to investigate the Ratchet Effect in two-dimensional electron system under microwave radiation," Proceedings of the International Semiconductor Conference CAS, Vol. 1, No. 10, 337-340, Sinaia, Oct. 2009.

20. Takacs, A., D. Medhat, H. Aubert, and J.-C. Portal, "A method for estimating the electromagnetic power delivered by the front-end module used to investigate the Ratchet E®ect in two- dimensional electron gas system under microwave radiation," Proceedings of the European Microwave Conference EuMC, 1560-1563, Sep. 2010.

21. Medhat, D., A. Takacs, H. Aubert, and J.-C. Portal, "Investigation of the metallic cavity influence on the electromagnetic behavior of the setup used in studying the ratchet effect," Progress In Electromagnetics Research Symposium Abstracts, 452-453, Marrakesh, Morocco, Mar. 20-23, 2011.
doi: --- Either ISSN or Journal title must be supplied.