1. Reichman, A., "Standardization of body area networks," IEEE Int. Conf. COMCAS, 1-4, Tel Aviv, Nov. 9--11, 2009.
2. Li, H.-B., K.-I. Takizawa, B. Zheri, and R. Kohno, "Body area network and its standardization at IEEE 802.15.MBAN," 16th IST Mobile and Wireless Commun. Summit., 1-5, Budapest, Jul. 1--5, 2007.
3. Wang, Q., K. Masami, and J. Wang, "Channel modeling and BER performance for wearable and implant UWB body area links on chest," IEEE Int. Conf. ICUWB, 316-320, Vancouver, BC, Sep. 9--11, 2009.
4. Dissanayake, T., M. R. Yuce, and C. Ho, "Design and evaluation of a compact antenna for implant-to-air UWB communication," IEEE Antennas Wireless Propag. Lett., Vol. 8, 153-156, 2009.
doi:10.1109/LAWP.2009.2013370
5. Dissanayake, T., K. Esselle, and M. Yuce, "UWB antenna impedance matching in biomedical implants," 3rd European Conf. on Antennas and Propag., 3523-3526, Berlin, Mar. 23--27, 2009.
6. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601
7. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604
8. Zasowski, T., G. Meyer, F. Althaus, and A. Wittneben, "UWB signal propagation at the human head," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1836-1845, Jun. 2006.
doi:10.1109/TMTT.2006.871989
9. Chen, Y., et al. "Cooperative communications in ultra-wideband wireless body area networks: Channel modeling and system diversity analysis," IEEE J. Sel. Areas Commun., Vol. 27, No. 1, 5-16, Jan. 2009.
doi:10.1109/JSAC.2009.090102
10. Hao, Y., A. Alomainy, Y. Zhao, and C. Parini, "UWB body-centric network: Radio channel characteristics and deterministic propagation modelling," The Institution of Eng. and Technology Seminar on Ultra Wideband Sys., Technologies and Applicat., 160-164, London, Apr. 20, 2006.
11. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701
12. Zhu, G. K. and M. Popovic, "Comparison of radar and thermoacoustic technique in microwave breast imaging," Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011.
doi:10.2528/PIERB11080204
13. Wang, J. and D. Su, "Design of an ultra wideband system for in-body wireless communications," The 4th Asia-Pacific Conf. on Environmental Electromagnetics, 565-568, Dalian, Aug. 1--4, 2006.
14. Khaleghi, A. and I. Balasingham, "On the ultra wideband propagation channel characterizations of the biomedical implants," IEEE 69th Veh. Technol. Conf., 1-4, Barcelona, Apr. 26--29, 2009.
15. Thiel, F. and F. Seifert, "Noninvasive probing of the human body with electromagnetic pulses: Modeling of the signal path," J. Appl. Phys., Vol. 105, No. 4, 044904-044904, Feb. 2009.
doi:10.1063/1.3077299
16. Varotto, G. and E. M. Staderini, "A 2D simple attenuation model for EM waves in human tissues: Comparison with a FDTD 3D simulator for UWB medical radar," IEEE Int. Conf. on Ultra-Wideband, Vol. 3, 1-4, Leibniz, Germany, Sep. 10--12, 2008.
17. Collin, R. E., Foundations for Microwave Engineering, 179-181, McGraw-Hill, 1966.
18. Ramo, S., J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, 2nd Ed., 285, John Wiley, 1984.
19. Pozar, D. M., Microwave Engineering, 3rd Ed., 187, Wiley, 2005.
20. Beatty, R. W. and D. M. Kerns, "Relationships between different kinds of network parameters, not assuming reciprocity or equality of the waveguide or transmission line characteristic impedances," Proc. IEEE, Vol. 52, 84, Jan. 1964.
doi:10.1109/PROC.1964.2756
21. Kerns, D. M. and R. W. Beatty, Basic Theory of Waveguide Junctions and Introductory Microwave Network Analysis, 136-139, Pergamon, 1967.
22. Frickey, D. A., "Conversions between S, Z, Y , h, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 2, 205-211, Feb. 1994.
doi:10.1109/22.275248
23. Marks, R. B. and D. F. Williams, "Comments on conversions between S, Z, Y , h, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 4, 914-915, Apr. 1995.
doi:10.1109/22.375247
24. Marks, R. B. and D. F. Williams, "A general waveguide circuit theory," J. Res. Natl. Inst. Stand. Technol., Vol. 97, 533-561, Sep.--Oct. 1992.
25. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403
26. Yamamoto, H., J. Zhou, and T. Kobayashi, "Ultra wideband electromagnetic phantoms for antennas and propagation studies," IEICE Trans. Fundamentals, Vol. E91-A, No. 11, Nov. 2008.
27. Andreuccetti, D., R. Fossi, and C. Petrucci, Dielectric properties of body tissues, IFAC-CNR, Florence, Italy, 1997--2007. Available: http://niremf.ifac.cnr.it/tissprop/#over.
28. Kieffer, S. A. and E. R. Heitzman, An Atlas of Cross-sectional Anatomy, Harper and Row, 1979.
29. Spitzer, V. M. and D. G. Whitlock, Atlas of the Visible Human Male, Jones and Bartlett, 1998.
30. Ackerman, M. J., "The visible human project," Proc. IEEE, Vol. 86, No. 3, 504-511, Mar. 1998.
doi:10.1109/5.662875