Vol. 38
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-08
Computationally Efficient Model for UWB Signal Attenuation Due to Propagation in Tissue for Biomedical Implants
By
Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012
Abstract
An analytical model which predicts the attenuation of ultrawide-band (UWB) signals as they traverse various inhomogeneous tissues is presented. The model provides a computationally efficient method of determining the frequency-dependent losses encountered by electromagnetic radio frequency (RF) signals used to communicate with biomedical implants. Classic transmission line theory is employed to generate an analytical representation which models the inhomogeneous tissue using layers of homogeneous material. The proposed model was verified experimentally with tests of both single and multilayer samples. A realistic abdominal implant scenario was also modeled and the predictions were verified using a commercially available 3D electromagnetic (EM) simulator. The results of this study indicate that for deep implants the higher frequency portion of the UWB spectrum is attenuated much more strongly than the lower end of the band. This implies that for robust communication UWB signals targeting biomedical implants should be limited to the lower portion of the spectrum.
Citation
Paul Theilmann, M. Ali Tassoudji, E. Harrison Teague, Donald F. Kimball, and Peter M. Asbeck, "Computationally Efficient Model for UWB Signal Attenuation Due to Propagation in Tissue for Biomedical Implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.
doi:10.2528/PIERB11112111
References

1. Reichman, A., "Standardization of body area networks," IEEE Int. Conf. COMCAS, 1-4, Tel Aviv, Nov. 9--11, 2009.

2. Li, H.-B., K.-I. Takizawa, B. Zheri, and R. Kohno, "Body area network and its standardization at IEEE 802.15.MBAN," 16th IST Mobile and Wireless Commun. Summit., 1-5, Budapest, Jul. 1--5, 2007.

3. Wang, Q., K. Masami, and J. Wang, "Channel modeling and BER performance for wearable and implant UWB body area links on chest," IEEE Int. Conf. ICUWB, 316-320, Vancouver, BC, Sep. 9--11, 2009.

4. Dissanayake, T., M. R. Yuce, and C. Ho, "Design and evaluation of a compact antenna for implant-to-air UWB communication," IEEE Antennas Wireless Propag. Lett., Vol. 8, 153-156, 2009.
doi:10.1109/LAWP.2009.2013370

5. Dissanayake, T., K. Esselle, and M. Yuce, "UWB antenna impedance matching in biomedical implants," 3rd European Conf. on Antennas and Propag., 3523-3526, Berlin, Mar. 23--27, 2009.

6. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601

7. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

8. Zasowski, T., G. Meyer, F. Althaus, and A. Wittneben, "UWB signal propagation at the human head," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1836-1845, Jun. 2006.
doi:10.1109/TMTT.2006.871989

9. Chen, Y., et al. "Cooperative communications in ultra-wideband wireless body area networks: Channel modeling and system diversity analysis," IEEE J. Sel. Areas Commun., Vol. 27, No. 1, 5-16, Jan. 2009.
doi:10.1109/JSAC.2009.090102

10. Hao, Y., A. Alomainy, Y. Zhao, and C. Parini, "UWB body-centric network: Radio channel characteristics and deterministic propagation modelling," The Institution of Eng. and Technology Seminar on Ultra Wideband Sys., Technologies and Applicat., 160-164, London, Apr. 20, 2006.

11. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701

12. Zhu, G. K. and M. Popovic, "Comparison of radar and thermoacoustic technique in microwave breast imaging," Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011.
doi:10.2528/PIERB11080204

13. Wang, J. and D. Su, "Design of an ultra wideband system for in-body wireless communications," The 4th Asia-Pacific Conf. on Environmental Electromagnetics, 565-568, Dalian, Aug. 1--4, 2006.

14. Khaleghi, A. and I. Balasingham, "On the ultra wideband propagation channel characterizations of the biomedical implants," IEEE 69th Veh. Technol. Conf., 1-4, Barcelona, Apr. 26--29, 2009.

15. Thiel, F. and F. Seifert, "Noninvasive probing of the human body with electromagnetic pulses: Modeling of the signal path," J. Appl. Phys., Vol. 105, No. 4, 044904-044904, Feb. 2009.
doi:10.1063/1.3077299

16. Varotto, G. and E. M. Staderini, "A 2D simple attenuation model for EM waves in human tissues: Comparison with a FDTD 3D simulator for UWB medical radar," IEEE Int. Conf. on Ultra-Wideband, Vol. 3, 1-4, Leibniz, Germany, Sep. 10--12, 2008.

17. Collin, R. E., Foundations for Microwave Engineering, 179-181, McGraw-Hill, 1966.

18. Ramo, S., J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, 2nd Ed., 285, John Wiley, 1984.

19. Pozar, D. M., Microwave Engineering, 3rd Ed., 187, Wiley, 2005.

20. Beatty, R. W. and D. M. Kerns, "Relationships between different kinds of network parameters, not assuming reciprocity or equality of the waveguide or transmission line characteristic impedances," Proc. IEEE, Vol. 52, 84, Jan. 1964.
doi:10.1109/PROC.1964.2756

21. Kerns, D. M. and R. W. Beatty, Basic Theory of Waveguide Junctions and Introductory Microwave Network Analysis, 136-139, Pergamon, 1967.

22. Frickey, D. A., "Conversions between S, Z, Y , h, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 2, 205-211, Feb. 1994.
doi:10.1109/22.275248

23. Marks, R. B. and D. F. Williams, "Comments on conversions between S, Z, Y , h, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 4, 914-915, Apr. 1995.
doi:10.1109/22.375247

24. Marks, R. B. and D. F. Williams, "A general waveguide circuit theory," J. Res. Natl. Inst. Stand. Technol., Vol. 97, 533-561, Sep.--Oct. 1992.

25. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403

26. Yamamoto, H., J. Zhou, and T. Kobayashi, "Ultra wideband electromagnetic phantoms for antennas and propagation studies," IEICE Trans. Fundamentals, Vol. E91-A, No. 11, Nov. 2008.

27. Andreuccetti, D., R. Fossi, and C. Petrucci, Dielectric properties of body tissues, IFAC-CNR, Florence, Italy, 1997--2007. Available: http://niremf.ifac.cnr.it/tissprop/#over.

28. Kieffer, S. A. and E. R. Heitzman, An Atlas of Cross-sectional Anatomy, Harper and Row, 1979.

29. Spitzer, V. M. and D. G. Whitlock, Atlas of the Visible Human Male, Jones and Bartlett, 1998.

30. Ackerman, M. J., "The visible human project," Proc. IEEE, Vol. 86, No. 3, 504-511, Mar. 1998.
doi:10.1109/5.662875