Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-09
Design of a Dualband Omnidirectional Planar Microstrip Antenna Array
By
Progress In Electromagnetics Research, Vol. 126, 101-120, 2012
Abstract
This paper proposes and designs a new method of dualband omnidirectional planar microstrip antenna array. A cascade of transposed microstrip lines have been adapted to produce effective antenna structures that radiate omnidirectionally, with high efficiency, low reflection, and useful radiation patterns. In this paper, the antenna structure has been found to have low-pass characteristics due to the periodic discontinuities at the transposed junctions. The analysis and design of the low-pass characteristic are performed according to the filter theory of periodic structures and full-wave simulation. Therefore, a relatively higher frequency radiating array is appropriately designed with a low-pass filtering attribute, which prevents the lower frequency radiators from resonating at the relatively higher frequency. An air gap between adjacent transposed sections is proposed in order to enhance impedance matching, and a fork shape stub at the end is used as a virtual short point to enhance radiation at the higher frequency. Finally a single port dualband omnidirectional antenna array is obtained by locating the higher frequency radiating array with low-pass filtering attribute near the antenna feed and a relatively lower frequency radiating array at the end. An example of a dualband omnidirectional planar array is demonstrated experimentally, which operates at 2.32~2.56 GHz and 5.65~6.10 GHz with S11<-10 dB and a stable radiation pattern, and corresponding gains of 7.0~7.6 dBi and 6.9~7.9 dBi respectively.
Citation
Kunpeng Wei, Zhijun Zhang, and Zhenghe Feng, "Design of a Dualband Omnidirectional Planar Microstrip Antenna Array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
doi:10.2528/PIER11112101
References

1. Li, J. Y., J. L. Guo, Y. B. Gan, and Q. Z. Liu, "The tri-band performance of sleeve dipole antenna," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2081-2092, 2005.
doi:10.1163/156939305775570413

2. Khaleghi, A., "Diversity techniques with parallel dipole antennas: Radiation pattern analysis," Progress In Electromagnetics Research, Vol. 64, 23-42, 2006.
doi:10.2528/PIER06062401

3. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip-FED two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

4. Jaw, J.-L., F.-S. Chen, and D.-F. Chen, "Compact dualband CPW-fed slotted patch antenna for 2.4/5 GHz WLAN operation," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1947-1955, 2009.
doi:10.1163/156939309789932584

5. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.

6. Franklin, C. S., "Improvements in wireless telegraph and telephone aerials," British Patent, No. 242, 342, 1924.

7. Ghosh, S., A. Chakraborty, and S. Sanyal, "Loaded wire antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 54, 19-36, 2005.
doi:10.2528/PIER04080501

8. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems. Part I: The vertical grounding electrode," Progress In Electromagnetics Research, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101

9. Solbach, K., "Microstrip-franklin antenna," IEEE Trans. Antennas Propagat., Vol. 30, No. 4, 773-775, 1982.
doi:10.1109/TAP.1982.1142845

10. Judasz, T. J. and B. B. Balsley, "Improved theoretical and experimental models for the coaxial colinear antenna," IEEE Trans. Antennas Propagat., Vol. 37, 289-296, 1989.
doi:10.1109/8.18724

11. Herscovici, N., Z. Sipus, and P.-S. Kildal, "The cylindrical omnidirectional patch antenna," IEEE Trans. Antennas Propagat., Vol. 49, 1746-1753, Dec. 2001.
doi:10.1109/8.982455

12. Bancroft, R. and B. Bateman, "An omnidirectional microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 52, 3151-3153, Nov. 2004.

13. Bancroft, R. and B. Bateman, "An omnidirectional planar microstrip antenna with low sidelobes," Microwave and Optical Technology Letters, Vol. 42, 68-69, Jul. 2004.

14. Bancroft, R., "Design parameters of an omnidirectional planar microstrip antenna," Microwave and Optical Technology Letters, Vol. 47, No. 5, 414-418, Dec. 2005.
doi:10.1002/mop.21187

15. Li, J.-Y. and Y.-B. Gan, "Multi-band characteristic of open sleeve antenna," Progress In Electromagnetics Research, Vol. 58, 135-148, 2006.
doi:10.2528/PIER05090301

16. Wei, K., Z. Zhang, W. Chen, and Z. Fengm, M. F. Iskander, "A triband shunt-fed omnidirectional planar dipole array," IEEE Antennas Wireless Propag. Lett, Vol. 9, 850-85, 2010.
doi:10.1109/LAWP.2010.2069077

17. Alkanhal, M. A. S., "Composite compact triple-band microstrip antennas," Progress In Electromagnetics Research, Vol. 93, 221-236, 2009.
doi:10.2528/PIER09050407

18. Tze-Meng, O., K. G. Tan, and A. W. Reza, "A dual-band omni-directional microstrip antenna," Progress In Electromagnetics Research, Vol. 106, 363-376, 2010.
doi:10.2528/PIER10052411

19. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications ," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

20. Wu, Y.-J., B.-H. Sun, J.-F. Li, and Q.-Z. Liu, "Triple-band omni-directional antenna for WLAN application," Progress In Electromagnetics Research, Vol. 76, 477-484, 2007.
doi:10.2528/PIER07080601

21. Shum, Y. H., K. M. Luk, and C. H. Chan, "Multi-band base station antenna with compact microstrip resonant cell filters," IEE Proc. - Microw. Antennas Propag., Vol. 151, No. 6, 2004.
doi:10.1049/ip-map:20041047

22. Suh, Y. H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 2002.

23. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band ," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507

24. Toh, W. K., X. M. Qing, and Z. N. Chen, "A planar dualband antenna array," IEEE Trans. Antennas Propagat., Vol. 59, No. 3, 833-838, Mar. 2011.
doi:10.1109/TAP.2010.2103039

25. Isom, R., M. F. Iskander, Z. Yun, and Z. Zhang, "Design and development of multiband coaxial continuous transerse stub (CTS) antenna arrays," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, Aug. 2004.
doi:10.1109/TAP.2004.832336

26. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, Mass., 1979.

27. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, Inc., New York, 2005.