Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-08
An Independent Loops Search Algorithm for Solving Inductive Peec Large Problems
By
Progress In Electromagnetics Research M, Vol. 23, 53-63, 2012
Abstract
This paper describes an original approach for determining independent loops needed for mesh-current analysis in order to solve circuit equation system arising in inductive Partial Element Equivalent Circuit (PEEC) approach. Based on the combined used of several simple algorithms, it considerably speed-up the loops search and enables the building of an associated matrix system with an improved condition number. The approach is so well-suited for large degrees of freedom problems, saving significantly memory and decreasing the time of resolution.
Citation
Trung-Son Nguyen, Jean-Michel Guichon, Olivier Chadebec, Gerard Meunier, and Benjamin Vincent, "An Independent Loops Search Algorithm for Solving Inductive Peec Large Problems," Progress In Electromagnetics Research M, Vol. 23, 53-63, 2012.
doi:10.2528/PIERM11111503
References

1. Ruehli, A. E., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microw. Theory Techn., Vol. 22, No. 3, 216-221, Mar. 1974.
doi:10.1109/TMTT.1974.1128204

2. Ardon, V., J. Aime, O. Chadebec, E. Clavel, J.-M. Guichon, and E. Vialardi, "EMC modeling of an industrial variable speed drive with an adapted PEEC method," IEEE Trans. Mag., Vol. 46, No. 8, 2892-2898, 2010.
doi:10.1109/TMAG.2010.2043420

3. Kamon, M. and J. R. Philips, "Preconditioning techniques for constrained vector potential integral equations, with application to 3-D magnetoquasistatic analysis of electronic packages," Proceedings of the Colorado Conference on Iterative Methods, Apr. 1994.

4. Pillage, L. T., et al. Electronic Circuit and System Simulation Methods, 371-381, McGraw-Hill Inc., 1995.

5. Rong, A., A. C. Cangellaris, and L. Dong, "A novel graph partitioning technique for enhancing the computational effciency of the loop-tree generalized PEEC modeling of 3D interconnects," IEEE 14th Topical Meeting on Elect. Performance of Electron. Packaging, 253-256, 2005.
doi:10.1109/EPEP.2005.1563751

6. Antonini, G., D. Frigioni, and G. Miscione, "Hybrid formulation of the equation systems of the 3-D PEEC model based on graph algorithms," IEEE Trans. Circuits and Syst. - I: Reg. Papers, Vol. 57, No. 1, Jan. 2010.

7. Nguyen, T.-S., J.-M. Guichon, O. Chadebec, P. Labie, and J.- L. Coulomb, "Ships magnetic anomaly computation with integral equation and fast multipole method," IEEE Trans. Mag., Vol. 47, No. 5, 1414-1417, 2011.
doi:10.1109/TMAG.2010.2091626

8. Nguyen, T.-S., J.-M. Guichon, O. Chadebec, G. Meunier, and T. Le-Duc, "Inner-outer preconditioning strategy for 3D inductance extraction coupling with fast multipole method," Proceedings of International Conference on Computation in Electromagnetics, Apr. 2011.

9., [Online] InCa3D Software, www.cedrat.com..