Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-26
Hybrid TDIE-TDPO Method Using Weighted Laguerre Polynomials for Solving Transient Electromagnetic Problems
By
Progress In Electromagnetics Research, Vol. 126, 375-398, 2012
Abstract
An efficient and stable hybrid method, based on the time-domain integral equation (TDIE) and time-domain physical optics (TDPO), is developed for investigating transient radiation and scattering from perfectly electrical conducting (PEC) objects. It at first requires partitioning the PEC object surface into TDIE and TDPO regions, respectively. Then, a set of hybrid TDIE-TDPO equations is derived and solved using an adaptive marching-on-in-order (MOO) method. The fast Fourier transforms (FFT)-based blocking scheme is further implemented into the proposed algorithm so as to reduce N2O dependence of the traditional MOO method to NOlog2(NO), where NO is the highest order of the weighted Laguerre polynomials used for computation. Under such circumstances, its computational cost, in comparison with the full TDIE-MOO solver, is reduced significantly. Several numerical examples are presented to demonstrate its accuracy and efficiency in solving some typical transient electromagnetic problems.
Citation
Ming-Da Zhu, Xi-Lang Zhou, Wei Luo, and Wen-Yan Yin, "Hybrid TDIE-TDPO Method Using Weighted Laguerre Polynomials for Solving Transient Electromagnetic Problems," Progress In Electromagnetics Research, Vol. 126, 375-398, 2012.
doi:10.2528/PIER11111302
References

1. Bluck, M. J. and S. P.Walker, "Time-domain BIE analysis of large three dimensional electromagnetic scattering problems," IEEE Trans. on Antennas and Propagat., Vol. 45, No. 5, 894-901, May 1997.
doi:10.1109/8.575643

2. Wang, X., R. A. Wildman, D. S. Weile, and P. Monk, "A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 8, Part 1, 2442-2452, Aug. 2008.

3. Andriulli, F. P., K. Cools, F. Olyslager, and E. Michielssen, "Time domain Calderón identities and their application to the integral equation analysis of scattering by PEC objects part II: Stability," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 8, 2365-2375, Aug. 2009.
doi:10.1109/TAP.2009.2024464

4. Zhang, G.-H., M. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

5. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

6. Ji, Z., T. K. Sarkar, B. H. Jung, Y. S. Chung, M. Salazar-Palma, and M. Yuan, "A stable solution of time domain electric ¯eld integral equation for thin-wire antennas using the Laguerre polynomials," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 10, 2641-2649, Oct. 2004.
doi:10.1109/TAP.2004.834437

7. Jung, B.-H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects ," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502

8. Jung, B. H., Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the TDIE solver ," Progress In Electromagnetics Research, Vol. 70, 281-296, 2007.
doi:10.2528/PIER07013002

9. Xue, M. F. and W. Y. Yin, "Wideband pulse responses of fractal monopole antennas under the impact of an EMP," IEEE Trans. on Electromagn. Compat., Vol. 52, No. 1, 98-107, Feb. 2010.
doi:10.1109/TEMC.2009.2038065

10. Zhu, M. D., X. L. Zhou, and W. Y. Yin, "An adaptive marching-on-in-order method with FFT-based blocking scheme," IEEE Antennas Wireless Propag. Lett., Vol. 9, 436-439, 2010.

11. Shanker, B., A. A. Ergin, M. Lu, and E. Michielssen, "Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 3, 628-641, Mar. 2003.
doi:10.1109/TAP.2003.809054

12. Yilmaz, A. E., J. M. Jin, and E. Michielssen, "Time domain adaptive integral method for surface integral equations," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 10, 2692-2708, Oct. 2004.
doi:10.1109/TAP.2004.834399

13. Yilmaz, A. E., D. S. Weile, B. Shanker, J. M. Jin, and E. Michielssen, "Fast analysis of transient scattering in lossy media," IEEE Antennas Wireless Propag. Lett., Vol. 1, 14-17, 2002.
doi:10.1109/LAWP.2002.802577

14. Sun, E. Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. on Antennas and Propagat., Vol. 42, 9-15, Jan. 1994.

15. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. on Antennas and Propagat., Vol. 43, No. 2, 162-169, Feb. 1995.
doi:10.1109/8.366378

16. Hodges, R. E. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structures," IEEE Trans. on Antennas and Propagat., Vol. 43, 265-276, Feb. 1997.
doi:10.1109/8.560345

17. Obelleiro, F., J. M. Taboada, J. L. Rodríguez, J. O. Rubiños, and A. M. Arias, "Hybrid moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board antennas ," Microwave Opt. Technol. Lett., Vol. 27, No. 2, 88-93, Oct. 2000.
doi:10.1002/1098-2760(20001020)27:2<88::AID-MOP3>3.0.CO;2-4

18. Djordjevic, M. and B. M. Notaroš, "Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces ," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318

19. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 2, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814

20. Walker, S. P. and M. J. Vartiainen, "Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis ," IEEE Trans. on Antennas and Propagat., Vol. 46, No. 3, 318-324, Mar. 1998.
doi:10.1109/8.662650

21. Kobidze, G., B. Shanker, and E. Michielssen, "Hybrid PO-PWTD scheme for analyzing of scattering from electrically large PEC objects," IEEE Antennas and Propagation Society Int. Symp., Vol. 3, 547-555, 2003.

22. Qin, S. T., S. X. Gong, R.Wang, and L. X. Guo, "A TDIE/TDPO hybrid method for the analysis of TM transient scattering from two-dimensional combinative conducting cylinders," Progress In Electromagnetic Research, Vol. 102, 181-195, 2010.
doi:10.2528/PIER09122405

23. Junker, G. P., A. A. Kishk, and A. W. Glisson, "A novel delta gap source model for center fed cylindrical dipoles," IEEE Trans. on Antennas and Propagat., Vol. 43, No. 5, 537-540, May 1995.
doi:10.1109/8.384200

24. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. on Antennas and Propagat., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

25. Glassner, A. S., An Introduction to Ray Tracing, Academic Press, 1989.

26. Rius, J. M., M. Ferrando, and L. Jofre, "High-frequency RCS of complex radar targets in real-time," IEEE Trans. on Antennas and Propagat., Vol. 41, No. 9, 1308-1319, Sep. 1993.
doi:10.1109/8.247759

27. Asvestas, J., "The physical-optics integral and computer graphics," IEEE Trans. on Antennas and Propagat., Vol. 42, No. 12, 1459-1460, Dec. 1995.
doi:10.1109/8.475937

28. Hairer, E., C. H. Lubich, and M. Schlichte, "Fast numerical solution of nonlinear Volterra convolution equations," SIAM J. Sci. Stat. Comput., Vol. 6, No. 3, 532-541, 1985.
doi:10.1137/0906037

29. Veruttipong, T. W., "Time domain version of the uniform GTD," IEEE Trans. on Antennas and Propagat., Vol. 38, No. 11, 1757-1764, Nov. 1990.
doi:10.1109/8.102736

30. Altintas, A. and P. Russer, "Time-domain equivalent edge currents for transient scattering," IEEE Trans. on Antennas and Propagat., Vol. 49, No. 4, 602-606, Apr. 2001.
doi:10.1109/8.923321

31. Luo, W., W. Y. Yin, M. D. Zhu, and J. Y. Zhao, "Hybrid TDIE-TDPO method for studying on transient responses of some wire and surface structures illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 116, 203-219, 2011.

32. Luo, W., W. Y. Yin, M. D. Zhu, and J. F. Mao, "Investigation on electromagnetic responses of some complex wire-surface composite objects using hybrid TDIE-TDPO based MOT method," IEEE Electronmagn. Compat. Symp., 579-584, Aug. 2011.

33. Zhu, M. D., X. L. Zhou, and W. Y. Yin, "Investigation on electromagnetic responses of double objects illuminated by a high-power EMP using hybrid TDIE-TDPO method," IEEE Electronmagn. Compat. Symp., 547-555, Aug. 2010.

34. Zhu, H., Z.-H. Wu, X. Y. Zhang, and B.-J. Hu, "Time-domain integral equation solver for radiation from dipole antenna loaded with general bi-isotropic objects," Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011.
doi:10.2528/PIERB11081907

35. Guan, Y., S.-X. Gong, S. Zhang, B. Lu, and T. Hong, "A novel time-domain physical optics for computation of electromagnetic scattering of homogeneous dielectric objects," Progress In Electromagnetics Research M, Vol. 14, 123-134, 2010.
doi:10.2528/PIERM10081605

36. Li, J., B. Wei, Q. He, L.-X. Guo, and D.-B. Ge, "Time-domain terative physical optics method for analysis of EM scattering from the target half buried in rough surface: PEC case," Progress In Electromagnetics Research, Vol. 121, 391-408, 2011.
doi:10.2528/PIER11082906