Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-08
Pipelines Inspection Using Magnetic Induction Tomography Based on a Narrowband Pass Filtering Method
By
Progress In Electromagnetics Research M, Vol. 23, 65-78, 2012
Abstract
Pipelines are the most common apparatus in industries; therefore, the need for inspection during the manufacturing, construction and the operation stage is inevitable and invaluable. Magnetic Induction Tomography (MIT) is a new type of tomography technique that is sensitive to the electrical conductivity of objects.~It has been shown that the MIT technique is appropriate for imaging materials with high electrical conductivity contrasts; hence, the majority of the MIT systems were designed for detecting metallic objects. In this paper, MIT technique was proposed for pipeline inspection. Structural damages of the outer surface of the pipe were considered in this study. Nonetheless, it is challenging to use the traditional MIT pixel based reconstruction method (PBRM) as a suitable pipelines inspection tool because of the limited resolution. A narrowband pass filtering method (NPFM) of imaging pipe geometry was developed as a suitable image reconstruction method.~The proposed method can overcome the resolution limitations and produce useful information of the pipe structure.~This paper shows the comparative results from the novel NPFM and from traditional PBRM. While the PBRM fails to detect damages in outer structure of the pipe the NPFM successfully indentifies these damages. The method has been verified using experimental data from very challenging test samples. It is well known that using a coil array with an imaging region of 100 mm the PBRM based MIT can retrieve information with accuracy of about 10 mm (about 10%). With proposed NPFM the information on a resolution of 2 mm (which is about 2%) can be detected using the same measurement data.
Citation
Lu Ma, Hsin-Yu Wei, and Manuchehr Soleimani, "Pipelines Inspection Using Magnetic Induction Tomography Based on a Narrowband Pass Filtering Method," Progress In Electromagnetics Research M, Vol. 23, 65-78, 2012.
doi:10.2528/PIERM11111109
References

1. Griffths, H., "Magnetic induction tomography," Meas. Sci. Technol., Vol. 12, 1126-1131, Dec. 2001.
doi:10.1088/0957-0233/12/8/319

2. Dyck, D. N., D. A. Lowther, and E. M. Freeman, "A method of computing the sensitivity of the electromagnetic quantities to changes in the material and sources," IEEE Trans. on Magn., Vol. 3, No. 5, Sep. 1994.

3. Ktistis, C., D. W. Armitage, and A. J. Peyton, "Calculation of the forward problem for absolute image reconstruction in MIT," Physiol. Meas., Vol. 29, S455-S464, 2008.
doi:10.1088/0967-3334/29/6/S38

4. Peyton, A. J., Z. Z. Yu, and G. M. Lyon, "An overview of electromagnetic inductance tomography: Description of three different systems," Meas. Sci. Technol., Vol. 7, No. 3, 261-271, Mar. 1996.
doi:10.1088/0957-0233/7/3/006

5. Korjenevsky, A., V. Cherepenin, and S. Sapetsky, "Magnetic induction tomography: Experimental realization," Physiol. Meas., Vol. 21, No. 1, 89-94, 2000.
doi:10.1088/0967-3334/21/1/311

6. Scharfetter, H., K. Helmut Lackner, and J. Rosell, "Magnetic induction tomography: Hardware for multi-frequency in biological tissue," Physiol. Meas., Vol. 22, No. 1, 131-146, Feb. 2001.
doi:10.1088/0967-3334/22/1/317

7. Ma, X., A. J. Peyton, S. R. Higson, A. Lyons, and S. J. Dickinson, "Hardware and software design for an electromagnetic induction tomography (EMT) system applied to high contrast metal process applications," Meas. Sci. Technol., Vol. 17, No. 1, 111-118, 2006.
doi:10.1088/0957-0233/17/1/018

8. Coveney, J. A., M. H. Pham, A. K. Kyllo, and N. B. Gray, "Comparison of modeling approaches for the eddy current problem as applied to the geometry of a taphole," Meas. Sci. Technol., Vol. 17, No. 2, 340-352, 2006.
doi:10.1088/0957-0233/17/2/015

9. Hansen, P. C., "Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion," Society for Industrial and Applied Mathematics, Philadephia, 1998.

10. Soleimani, M. and W. R. B. Lionheart, "Image reconstruction in three-dimensional magnetostatic permeability tomography," IEEE Trans. on Magn., Vol. 41, No. 4, 1274-1279, 2005.
doi:10.1109/TMAG.2005.845158

11. Soleimani, M., "Sensitivity maps in three-dimensional magnetic induction tomography," Insight, Vol. 48, No. 1, 39-44, 2006.
doi:10.1784/insi.2006.48.1.39

12. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513

13. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 785-798, 2009.
doi:10.1163/156939309788019822

14. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

15. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

16. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

17. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

18. Flores-Tapia, D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
doi:10.2528/PIER11050408

19. Asimakis, N. P., I. S. Karanasiou, and N. K. Uzunoglu, "Non-invasive microwave radiometric system for intracranial applications: A study using the conformal L-notch microstrip patch antenna," Progress In Electromagnetics Research, Vol. 117, 83-101, 2011.