Vol. 28
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-12-20
Analytic and Numerically Efficient Scattering Equations for an Infinitely Flanged Coaxial Line
By
Progress In Electromagnetics Research Letters, Vol. 28, 149-158, 2012
Abstract
An infinitely flanged coaxial line is analytically solved with the mode-matching technique and Green's function to propose a precise yet fast-convergent scattering solution for complex permittivity measurement. Based on virtual current cancelation, we formulate the open half-space fields in terms of coaxial modes and related Green's functions and thus obtain the simultaneous equations with rapidly convergent integrals. Numerical computations were performed in terms of reflection coefficients and radiation patterns.
Citation
Yong Heui Cho, "Analytic and Numerically Efficient Scattering Equations for an Infinitely Flanged Coaxial Line," Progress In Electromagnetics Research Letters, Vol. 28, 149-158, 2012.
doi:10.2528/PIERL11110901
References

1. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection method for measuring dielectric properties of biological substances at radio and microwave frequencies ---A review," IEEE Trans. Instrum. Meas., Vol. 29, No. 3, 176-183, Sep. 1980.
doi:10.1109/TIM.1980.4314902

2. Mosig , J. R., J. E. Besson, M. Gex-Fabry, and F. E. Gardiol, "Reflection of an open-ended coaxial line and application to non-destructive measurement of materials," IEEE Trans. Instrum. Meas., Vol. 30, No. 1, 46-51, Mar. 1981.

3. Foster , K. R., B. R. Epstein, and M. A. Gealt, "Resonances in the dielectric absorption of DNA?," Biophysical Journal, Vol. 52, No. 3, 421-425, Sep. 1987.
doi:10.1016/S0006-3495(87)83231-9

4. Zheng, H. and C. E. Smith, "Permittivity measurements using a short open-ended coaxial line probe," IEEE Microwave Guided Wave Lett., Vol. 1, No. 11, 337-339, Nov. 1991.
doi:10.1109/75.93904

5. Li , L. L., N. H. Ismail, L. S. Taylor, and C. C. Davis, "Flanged coaxial microwave probes for measuring thin moisture layers," IEEE Trans. Biomed. Eng., Vol. 39, No. 1, 49-57, Jan. 1992.
doi:10.1109/10.108127

6. Sheen, N. I. and I. M. Woodhead, "An open-ended coaxial probe for broad-band permittivity measurement of agricultural products," J. Agr. Eng. Res. , Vol. 74, No. 2, 193-202, Oct. 1999.
doi:10.1006/jaer.1999.0444

7. Ju, Y., M. Saka, and H. Abe, "Microwave nondestructive detection of delamination in IC packages utilizing open-ended coaxial line sensor," NDT and E International, Vol. 32, No. 5, 259-264, Jul. 1999.
doi:10.1016/S0963-8695(98)00055-3

8. Filali, B., F. Boone, J. Rhazi, and G. Ballivy, "Design and calibration of a large open-ended coaxial probe for the measurement of the dielectric properties of concrete," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 10, 2322-2328, Oct. 2008.
doi:10.1109/TMTT.2008.2003520

9. Zhurav, S. M., "TEM-wave radiation from a coaxial waveguide with an infinite flange," Radiophysics and Quantum Electronics, Vol. 20, No. 7, 752-755, 1977.
doi:10.1007/BF01040643

10. Misra, D. K., "A quasi-static analysis of open-ended coaxial lines," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 10, 925-928, Oct. 1987.
doi:10.1109/TMTT.1987.1133782

11. Lee, J. H., H. J. Eom, and K. H. Jun, "Reflection of a coaxial line radiating into a parallel plate," IEEE Microwave Guided Wave Lett., Vol. 6, No. 3, 135-137, Mar. 1996.
doi:10.1109/75.481091

12. Noh , Y. C. and H. J. Eom, "Radiation from a flanged coaxial line into a dielectric slab," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2158-2161, Nov. 1999.
doi:10.1109/22.798014

13. Panariello, G., L. Verolino, and G. Vitolo, "Efficient and accurate full-wave analysis of the open-ended coaxial cable," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 7, 1304-1309, Jul. 2001.
doi:10.1109/22.932251

14. Asvestas , J. S., "Radiation of a coaxial line into a half-space ," IEEE Trans. Antennas Propagat., Vol. 54, No. 6, 1624-1631, Jun. 2006.
doi:10.1109/TAP.2006.875479

15. Huang, R. and D. Zhang, "Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method," IEEE Trans. Instrum. Meas., Vol. 57, No. 5, 931-939, May 2008.
doi:10.1109/TIM.2007.913830

16. Tan, W. and Z. Shen, "Efficient analysis of open-ended coaxial line using Sommerfeld identity and matrix pencil method," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 7-9, Jan. 2008.
doi:10.1109/LMWC.2007.911971

17. Cho, Y. H., "TM plane-wave scattering from finite rectangular grooves in a conducting plane using overlapping T-block method," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 746-749, Feb. 2006.
doi:10.1109/TAP.2005.863153

18. Serizawa , H. and K. Hongo, "Radiation from a flanged rectangular waveguide," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 3953-3962, Dec. 2005.
doi:10.1109/TAP.2005.859748

19. Jia , H., K. Yasumoto, and K. Yoshitomi, "Analysis of rectangular groove waveguides using Fourier transform technique," Microwave Optical Tech. Lett., Vol. 41, No. 5, 388-392, Jun. 2004.
doi:10.1002/mop.20148