Vol. 124
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-25
A Multi-Beam and Multi-Range Radar with FMCW and Digital Beam Forming for Automotive Applications
By
Progress In Electromagnetics Research, Vol. 124, 285-299, 2012
Abstract
In this paper, we propose a multi-beam and multi-range (MBMR) radar with frequency modulated continuous wave (FMCW) waveform and digital beam forming (DBF) algorithm to cover a detection area of long range and narrow angle (150 m, ±10°) as well as short range and wide angle (60 m, ±30°) as a single 24 GHz sensor. The developed radar is highly integrated with multiple phased-array antennas, a two-channel transmitter and a four-channel receiver using K-band GaAs RF ICs, and back-end processing board with subspace-based DBF algorithm. The proposed 24 GHz MBMR radar can be used for an adaptive cruise control (ACC) stop-and-go system which typically consists of three radars, such as two 24 GHz short-range radars for object detection in an adjacent lane and one 77 GHz long-range radar for object detection in the center lane.
Citation
Seong-Hee Jeong, Han-Yeol Yu, Jae-Eun Lee, Jun-Nam Oh, and Kwae-Hi Lee, "A Multi-Beam and Multi-Range Radar with FMCW and Digital Beam Forming for Automotive Applications," Progress In Electromagnetics Research, Vol. 124, 285-299, 2012.
doi:10.2528/PIER11110805
References

1. Gavrila, D. M., "Sensor-based pedestrian protection," IEEE Intelligent System, Vol. 16, No. 6, 77-81, 2001.
doi:10.1109/5254.972097

2. Russel, M. E., A. Crain, A. Campbell, C. A. Drubin, and W. F. Miccioli, "Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2444-2453, Dec. 1997.
doi:10.1109/22.643858

3. Giubbolini, L., "A multistatic microwave radar sensor for short range anticollision warning," IEEE Trans. Veh. Technol., Vol. 49, No. 6, 2270-2275, Nov. 2000.
doi:10.1109/25.901896

4. Wenger, J., "Automotive MM-wave radar: Status and trends in system design and technology," IEE Colloquium on Automotive Radar and Navigation Techniques, Feb. 1998.

5. Rasshofer, R. H. and K. Gresser, "Automotive radar and lidar systems for next generation driver assistance functions," Advances in Radio Science, Vol. 3, 205-209, 2005.
doi:10.5194/ars-3-205-2005

6. IVHS countermeasures for rear-end collisions, task 1: Volume VI Human factors studies, U.S. Dept. Transportation, Washington, DC, Feb. 1994. [Online]. DOT Rep. HS 808 565.Available: http://www.itsdocs.fhwa.dot.gov/jpodocs/repts te/45101!.pdf.

7. Zechnall, M. The `sensitive' automobile-Bosch sensors for complete environmental sensing, Press release, Bosch GMBH, Reutlingen, Germany, Apr. 2001.

8. Rasshofer, R. H. and K. Naab, "77 GHz long range radar systems status, ongoing developments and future challenges," Radar Conf., 2005. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber =01605590.

9. Kawakubo, A., S. Tokoro, Y. Yamada, and T. Kawasaki, "Electronically-scanning millimeter-wave RADAR for forward objects detection," SAE Congress, Vol. 127, No. 134, 2004.

10. Wixforth, T. and W. Ritschel, "Multimode-radar-technologie für 24 GHz," Auto Elektronik, Vol. 3, 56-58, 2004.

11. Gresham, I., et al. "Ultra-wideband radar sensors for short-range vehicular applications," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 9, 2105-2122, Sep. 2004.
doi:10.1109/TMTT.2004.834185

12. Jeong, S. H., J. N. Oh, and K. H. Lee, "Design of 24 GHz radar with subspace-based digital beam forming for ACC stop-and-go system," ETRI Journal, Vol. 32, No. 5, 827-830, Oct. 2010.
doi:10.4218/etrij.10.0210.0107

13. Lee, M. S. and Y. H. Kim, "Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications," IEEE Trans. Veh. Technol., Vol. 59, No. 5, 2290-2297, Jun. 2010.
doi:10.1109/TVT.2010.2045665

14. Yamaguchi, Y., M. Mitsumoto, M. A. Kawakami, M. Sengoku, and T. Abe, "Detection of objects by synthetic aperture FMCW radar," Electron. Commun. Jpn. I: Commun., Vol. 75, No. 3, 85-94, Mar. 1992.
doi:10.1002/ecja.4410750309

15. Ishimaru, A. and H. S. Tuan, "Theory of frequency scanning antennas," IEEE Trans. Antennas Propagat., Vol. 10, Mar. 1962.

16. Lange, M., J. Detlefsen, M. Bockmair, and U. Trampnau, "A millimeterwave low-range radar altimeter for helicopter applications --- System design," Conf. Proc. European Microwave Conf., 222-227, 1987.

17. Boukari, B., E. Moldvan, S. Affes, K. Wu, R. G. Bosisio, and S. O. Tatu, "A heterodyne six-port FMCW radar sensor architecture based on beat signal phase slope techniques," Progress In Electromagnetics Research, Vol. 93, 307-322, 2009.
doi:10.2528/PIER09052610

18. Huang, Y., P. V. Brennan, D. Patrick, I. Weller, P. Roberts, and K. Hughes, "FMCW based MIMO imaging radar for maritime navigation," Progress In Electromagnetics Research, Vol. 115, 327-342, 2011.

19. Axelsson, S., "Area target response of triangularly frequency-modulated continuous-wave radars," IEEE Trans. Aerospace Electron. Syst., Vol. 14, 266-277, Mar. 1978.
doi:10.1109/TAES.1978.308647

20. Li, D. D., S. C. Luo, C. Pero, X.Wu, and R. M. Knox, "Millimeter-wave FMCW/monopulse radar front-end for automotive applications," MTT-S Int. Microwave Symp. Dig., 277-280, 1999.

21. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902

22. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

23. Alsehaili, M., S. Noghanian, A. R. Sebak, and D. A. Buchanan, "Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106

24. Zhang, X., G. Feng, and D. Xu, "Blind direction of angle and time delay estimation algorithm for uniform linear array employing multi-invariance MUSIC," Progress In Electromagnetics Research Letters, Vol. 13, 11-20, 2010.
doi:10.2528/PIERL09102611

25. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the Newton method to improve the accuracy of toa estimation with the beamforming algorithm and the music algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

26. Krim, H. and M. Viberg, "Two decades of array signal processing research," IEEE Signal Processing Magazine, Jul. 1996.

27. Chen, Z. and S. Otto, "A taper optimization for pattern synthesis of microstrip series-fed patch array antennas," IEEE EUWIT, 160-163, 2009.

28. Musch, T., "A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL," IEEE Trans. Instrumentation and Measurement, Vol. 52, 324-327, Apr. 2003.
doi:10.1109/TIM.2003.810046

29. Bartlett, M. S., "Smoothing periodograms from time-series with continuous spectra," Nature, Vol. 161, 686-687, 1948.
doi:10.1038/161686a0

30. Schmidt, R. O. A signal subspace approach to multiple emitter location and spectral estimation, Ph.D. Thesis, Stanford Univ., Stanford, CA, Nov. 1981.

31. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

32. Lee, H. B. and M. S. Wengrovitz, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 38, 1545-1559, Sep. 1990.
doi:10.1109/29.60074

33. Li, J., "Improved angular resolution for spatial smoothing techniques," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 40, 3078-3081, Dec. 1992.

34. Rawiwan, P., P. Satayarak, P. Supanakoon, M. Chamchoy, S. Promwong, and P. Tangtisanon, "Direction-of-arrival estimation using MUSIC and ESPRIT algorithm," EECON-24, 682-686, Nov. 2001.

35. Phaisal-atsawasenee, N. and R. Suleesathira, "Improved angular resolution of beamspace MUSIC for finding directions of coherent sources," IEEE ISSCAA, 51-56, Harbin, China, Jan. 2006.