Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-20
Tunable All Optical Switch Implemented in a Liquid Crystal Filled Dual-Core Photonic Crystal Fiber
By
Progress In Electromagnetics Research M, Vol. 22, 179-189, 2012
Abstract
We propose an all optical switch in a dual-core photonic crystal fiber (PCF) that has the core region consisting of soft glass and has nematic liquid crystal filled holes in the cladding region. Light waves are guided in this PCF by total internal reflection (TIR) due to the refractive index contrast between soft glass and liquid crystal (LC). Its wavelength dependent coupling, birefringence and dispersion are calculated and later use these parameters to evaluate the switching characteristics of short pulses propagating through this optical waveguide. The switch demonstrates tunability with external perturbation such as applying external heat source or electric field. Refractive index sensitivity of LC with these perturbation as well as polarization of the light signal determines the coupling, birefringence and dispersion properties of the overall waveguide and its switching characteristics.
Citation
Kaisar R. Khan, Serge Bidnyk, and Trevor J. Hall, "Tunable All Optical Switch Implemented in a Liquid Crystal Filled Dual-Core Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 22, 179-189, 2012.
doi:10.2528/PIERM11102810
References

1. Bjarkiev, A., J. Broeng, and A. S. Bjarkiev, Photonic Crystal Fibers, Kluwer Accedemic Publishers, 2003.

2. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

3. Knight, J. C., T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Lett., Vol. 21, No. 19, 1547, 1996.

4. Gander, M. J., R. McBride, J. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Experimental measurement of group velocity dispersion in photonic crystal fibre," Electronics Letters, Vol. 35, 63-64, 1999.
doi:10.1049/el:19990055

5. Leong, J., P. Petropoulos, J. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. Monro, and D. Rich, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for effcient 1-μm pumped supercontinuum generation," Journal of Lightwave Technology, Vol. 24, No. 11, 183-190, 2006.
doi:10.1109/JLT.2005.861114

6. Cucinotta, A., F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, "Ampliffication properties of Er3+-Doped photonic crystal fibers," Journal of Lightwave Technology, Vol. 21, No. 3, 782-790, 2003.
doi:10.1109/JLT.2003.809576

7. Weirich, J., J. L½gsgaard, L. Scolari1, L. Wei, T. T. Alkeskjold, and A. Bjarklev, "Biased liquid crystal infiltrated photonic bandgap fiber," Optics Express, Vol. 17, No. 6, 4442-4453, 2009.
doi:10.1364/OE.17.004442

8. Saito, K., N. J. Florous, S. K. Varshney, and M. Koshiba, "Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator," Journal of Lightwave Technology, Vol. 26, No. 6, 663-669, 2008.
doi:10.1109/JLT.2007.915276

9. Hsiao, V. and C.-Y. Ko, "Light-controllable photoresponsive liquid-crystal photonic crystal fiber," Optics Express, Vol. 16, No. 17, 12670-12676, 2008.
doi:10.1364/OE.16.012670

10. Larsen, T. T., A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express, Vol. 11, No. 20, 2589-2596, 2003.
doi:10.1364/OE.11.002589

11. Saitoh, K., Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Optics Express, Vol. 11, 3188-3195, 2003.
doi:10.1364/OE.11.003188

12. Khan, K. R. and T. X. Wu, "Short pulse propagation in wavelength selective index guided photonics crystal fiber coupler," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, No. 3, 752-757, 2008.
doi:10.1109/JSTQE.2008.923161

13. Khan, K. R., T. X. Wu, D. N. Christodoulides, and G. I. Stegeman, "Soliton switching and multifrequency generation in nonlinear photonic crystal fiber," Optics Express, Vol. 16, No. 13, 9417-9428, 2008.
doi:10.1364/OE.16.009417

14. Gallagher, D. F. G. and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics-Pros and Cons," Proc. SPIE, Vol. 4987, 69-82, 2003.
doi:10.1117/12.473173

15. Hameed, M., S. A Obayya, K. Al-Begain, M. Abo El Maaty, and A. Nasr, "Modal properties of a novel index guiding nematic liquid crystal photonic crystal fiber," Journal of Light Wave Technology, Vol. 27, No. 21, 4754-4762, 2009.
doi:10.1109/JLT.2009.2026489

16. Hameed, M. F., S. A. Obayya, K. Al-Begain, A. M. Nasr, and M. I. Abo El Maaty, "Coupling characteristics of a glass nematic liquid crystal photonic crystal fibre coupler," IET Optoelectronics, Vol. 3, No. 6, 264-273, Dec. 2009.
doi:10.1049/iet-opt.2009.0033

17. Hameed, M. F., S. A. Obayya, and R. J. Wiltshire, "Multiplexer-demultiplexer based on nematic liquid crystal photonic crystal fiber coupler," J. Opt. Quantum Electron., Vol. 41, No. 4, 315-326, Mar. 2009.
doi:10.1007/s11082-009-9334-x

18. Hameed, M. F. and S. A. Obayya, "Polarization splitter based on soft glass nematic liquid crystal photonic crystal fiber," IEEE Photonics Journal, Vol. 1, No. 6, 265-276, Dec. 2009.
doi:10.1109/JPHOT.2009.2037977

19. Jin, J., The Finite Element Method in Electromagnetics, Wiley & Sons, 2002.

20., Manufacturer data sheet of SF6 soft glass, Schott North America,Inc..

21. Leong, J., "Fabrication and applications of lead-silicate glass holey fiber for 1-1.5microns: Nonlinearity and dispersion trade offs,", Ph.D. Thesis, University of Southampton, Faculty of Engineering, Science and mathematics optoelectronics research centre 2007.

22. Li, J. and S. T.Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys., Vol. 95, 896, 2004.

23. Li, J., S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys., Vol. 96, No. 19, 2004.

24. Khan, K. and T. Hall, "Tunable liquid crystal filled photonic crystal fiber coupler," Proceeding of SPIE Photonics Europe, 2010.

25. Agrawal, G. P., Nonlinear Fiber Optics, 3rd edition, Academic Press, 2001.

26. Coen, S., A. H. L. Chau, R. Leohardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in phototonic crystal fibers," J. Opt. Soc. Am. B, Vol. 19, 753-764, 2002.
doi:10.1364/JOSAB.19.000753