1. Wolinski, T. R., A. Czapla, S. Ertman, M. Tefelska, M. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electronics, Vol. 39, 1021-1032, 2007.
doi:10.1007/s11082-007-9127-z
2. Edelmann, A. G. and S. F. Helfert, "Three-dimensional analysis of hexagonal structured photonic crystals using oblique coordinates," Opt. Quantum Electronics, Vol. 41, 243-254, 2009.
doi:10.1007/s11082-009-9342-x
3. Lourtioz, J., H. Benisty, V. Berger, and J. Gerard, Book Photonic Crystals, Springer-Verlag, Berlin Heidelberg, 2008.
4. Moghaddami, M. K., M. M. Mirsalehi, and A. R. Attari, "A 60。photonic crystal waveguide bend with improved transmission characteristics," Optica Applicata, Vol. 39, 2009.
5. Badaoui , H., M. Feham, and M. Abri, "Photonic-crystal band-pass resonant filters design using the two-dimensional FDTD method," International Journal of Computer Science Issues, IJCSI, Vol. 8, Issue 3, No. 2, 127-132, 2011..
6. Joannopoulos , J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New York, 2007.
7. Li, S., H. W. Zhang, Q. Y. Wen, Y. Q. Song, W. W. Ling, and Y. X. Li, "Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime," Appl. Phys. B, Vol. 95, 745-749, 2009.
doi:10.1007/s00340-009-3470-7
8. Taflove, A., Computational Electromagnetics: The Finite Difference Time Domain Method, Artech House, Boston, London, 1995.
9. Koshiba, M., Y. Tsuji, and S. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave and Wireless Components Letters, Vol. 11, 152-154, 2001.
doi:10.1109/7260.916327