Vol. 122
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-24
A 3D Target Imaging Algorithm Based on Two-Pass Circular SAR Observations
By
Progress In Electromagnetics Research, Vol. 122, 341-360, 2012
Abstract
In circular synthetic aperture radar (CSAR), the radar collects data over a circular not a linear trajectory. The two-dimensional (2D) CSAR image also contains three-dimensional (3D) information about the target. In this paper, we propose an imaging algorithm for 3D target reconstruction with two-pass CSAR observations so as to overcome the problem of limited azimuthal persistence for real anisotropic targets, and avoid the assumption that target falls into the same resolution cell for each elevation pass when multi-pass observations are used. In the algorithm, the first step is to divide both of the two full-aperture CSAR data into subapertures in the same way; the second step is to obtain, for each subaperture, the height of target according to the established relationship between the pixel displacements in the image pair of two observations on the same focal plane and the pixel displacements in the image pair of one observation on two different focal planes; the third step is to obtain the 3D target coordinates based on the retrieved height information and the 2D image coordinates; the last step is to get the final 3D image by combining the obtained 3D images of all subapertures. The results of point target simulation indicate that the 3D information (both amplitudes and positions) are well reconstructed. At the same time, the processing results of backhoe data simulated by the Xpatch software show that the outline of the 3D structure is also well reconstructed although the available data corresponding to the depressing angles are not as good as expected.
Citation
Lingjuan Yu, and Yunhua Zhang, "A 3D Target Imaging Algorithm Based on Two-Pass Circular SAR Observations," Progress In Electromagnetics Research, Vol. 122, 341-360, 2012.
doi:10.2528/PIER11101901
References

1. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, New York, 1999.

2. Ishimaru, A., T. K. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1524-1530, Sep. 1998.
doi:10.1109/36.718856

3. Cantalloube, H. M. J., E. Colin-Koeniguer, and H. Oriot, "High resolution SAR imaging along circular trajectories," IEEE International Geoscience and Remote Sensing Symposium, 2007.

4. Cantalloube, H. M. J., H. Oriot, and E. ColinKoeniger, "Physic and experimental issues on high resolution SAR imaging of urban area," IEEE International Geoscience and Remote Sensing Symposium, 2008.

5. Frölind, P.-O. U. and M. H. Lars, First Results on VHF-band SAR Imaging using Circular Tracks, EUSAR, Gustavsson, Anders (Swedish Defence Research Agency), 2008.

6. Hantscher, S., et al. "94 GHz person scanner with circular aperture as part of a new sensor concept on airports," 11th International Radar Symposium, 2010.

7. Tan, W. X., W. Hong, Y. P. Wang, and Y. R. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307

8. Liu, Q., W. Hong, W. X. Tan, Y. Lin, Y. P. Wang, and Y. R.Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

9. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

10. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1123-1136, Sep. 1996.
doi:10.1109/36.536528

11. Fortuny, J. and J. M. Lopez-Sanchez, "Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 10, 1434-1444, 2001.
doi:10.1109/8.954932

12. Guo, D. M., H. P. Xu, and J. W. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

13. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Transactions on Image Processing, Vol. 5, No. 8, 1252-1265, 1996.
doi:10.1109/83.506760

14. Cantalloube, H. M. J., P. Dubois-Fernandez, and X. Dupuis, "Very high resolution SAR images over dense urban area," IEEE International Geoscience and Remote Sensing Symposium, 2005.

15. Pinheiro, M., et al. "Tomographic 3D reconstruction from airborne circular SAR," IEEE International Geoscience and Remote Sensing Symposium, 2009.

16. Oriot, H. and C. Hubert, "Circular SAR imagery for urban remote sensing," EUSAR, 2008.

17. Ertin, E., et al. "GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures," Proc. SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, Vol. 6568, 656802, 2007.

18. Ertin, E., R. L. Moses, and L. C. Potter, "Interferometric methods for three-dimensional target reconstruction with multipass circular SAR ," Radar, Sonar & Navigation, IET, Vol. 4, No. 3, 464-473, 2010.

19. Ertin, E., L. C. Potter, and R. L. Moses, "Enhanced imaging over complete circular apertures," Fortieth Asilomar Conference on Signals, Systems and Computers, 2006.

20. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse multipass 3D SAR imaging: Applications to the GOTCHA data set," Proc. SPIE Algorithms for Synthetic Aperture Radar Imagery XVI, Vol. 7337, 733703 2009.

21. Potter, L. C., et al. "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526

22. Moore, L. J. and L. C. Potter, "Three-dimensional resolution for circular synthetic aperture radar," Proc. SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, Vol. 6568, 656804, 2007.

23. Ranjan, B., "Two-dimensional evolutionary programming-based CLEAN," IEEE Transations on Aerospace and Electronic Systems , Vol. 39, No. 1, 373-382, 2003.
doi:10.1109/TAES.2003.1188920

24. Camps, A., J. Bar'a, F. Torres, and I. Corbella, "Extension of the clean technique to the microwave imaging of continuous thermal sources by means of aperture synthesis radiometers," Progress In Electromagnetics Research, Vol. 18, 67-83, 1998.
doi:10.2528/PIER97041500

25. http://eaton.math.rpi.edu/CourseMaterials/Cheney/backhoe/.