Vol. 37
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-12-08
Compact Two-Layer Microstrip Bandpass Filters Using Broadside-Coupled Resonators
By
Progress In Electromagnetics Research B, Vol. 37, 81-102, 2012
Abstract
This paper presents a design methodology for realizing broadside-coupled microstrip bandpass filters on multilayer substrates to reduce the size of the filter. The new filter configuration consists of broadside coupled split-ring resonators on two layers backed by a ground plane. With the proposed new method, miniaturization to a greater extent can be achieved compared to the conventional method of realizing microstrip multilayer filters. In addition, coupling apertures in the ground plane used to achieve coupling among the resonators in conventional multilayer structures are eliminated. The proposed design is more flexible compared to traditional multilayer filters. Layers can be easily added to increase the filter order. To demonstrate the method, a miniaturized two-layered bandpass filter centered at 728 MHz with low insertion loss is implemented and investigated. Miniaturization of more than 25% is achieved compared to the conventional broadside coupled structure and more than 40% miniaturization compared to the edge coupled structure. The new microstrip filter discussed in this paper can be realized using simple fabrication techniques.
Citation
Subash Vegesna, and Mohammad Saed, "Compact Two-Layer Microstrip Bandpass Filters Using Broadside-Coupled Resonators," Progress In Electromagnetics Research B, Vol. 37, 81-102, 2012.
doi:10.2528/PIERB11101708
References

1. Cho, C. and K. C. Gupta, "Design methodology for multilayered coupled line filters," IEEE MTT-S Digest, 785-788, 1997.

2. Guan, W. J. and L. A. Carpenter, "A design of vertical coupled stacked bandpass filter using multilayer structure without via," Proc. Asia-Pacific Microwave Conference, 2006.

3. Clavet, Y., E. Rius, C. Quendo, J. F. Favennec, C. Person, C. Laporte, C. Zanchi, P. Moroni, J. C. Cayrou, and J. L. Cazaux, "C-band multilayer bandpass filter using open-loop resonators with floating metallic patches ," IEEE Microwave Wireless Components Letters, Vol. 17, No. 9, 646-648, Sep. 2007.
doi:10.1109/LMWC.2007.903438

4. Adam, H., A. Ismail, M. A. Mahdi, M. S. Razalli, A. R. H. Alhawari, and B. K. Esfeh, "X-band miniaturized wideband bandpass filter utilizing multilayered microstrip hairpin resonator," Progress In Electromagnetics Research, Vol. 93, 177-188, 2009.
doi:10.2528/PIER09042202

5. Chen, C. F., T. Y. Huang, C. H. Tseng, and R. B. Wu, "A miniaturized multilayer quasi-elliptic bandpass filter with aperture-coupled microstrip resonators," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 9, 2688-2692, Sep. 2005.
doi:10.1109/TMTT.2005.854204

6. Tang, C. W., C. W. Shen, and C. C. Tseng, "Design of multilayered broadband bandpass filter with LTCC technology," Electronics Letters, Vol. 43, No. 21, Oct. 2007.

7. Hong, J. S. and M. J. Lancaster, "Aperture-coupled microstrip open-loop resonators and their applications to design of novel microstrip bandpass filters," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1848-1855, Sep. 1996.
doi:10.1109/22.788522

8. Bin, Y., "The design of novel multilayer slow-wave aperture-coupled microstrip bandpass filters," Microwave and Optical Tech. Letters, Vol. 48, No. 8, 1633-1638, Aug. 2006.
doi:10.1002/mop.21715

9. Schwab, W. and W. Menzel, "On the design of planar microwave components using multilayer structures," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 1, 67-72, Jan. 1992.
doi:10.1109/22.108324

10. Tang, C. W. and H. C. Hsu, "Development of multilayered bandpass filters with multiple transmission zeros using open-stub/short-stub/serial semi lumped resonators," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 3, 624-634, Mar. 2010.
doi:10.1109/TMTT.2010.2040352

11. Tang, C. W. and D. L. Yang, "Realization of multilayered wide-passband bandpass filter with low-temperature co-fired ceramic technology," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 7, 1668-1674, Jul. 2008.
doi:10.1109/TMTT.2008.925235

12. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Trans. Antennas. Propag., Vol. 51, No. 10, 2572-2581, Oct. 2003.
doi:10.1109/TAP.2003.817562

13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, Nov. 1999.

14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

15. Marqués, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications , Chapter 2, 60-62, Chapter 3, 146-318, New Jersey, John Wiley & Sons, Inc., 2008.

16. Niu, J.-X., X.-L. Zhou, and L.-S.Wu, "Analysis and application of novel structures based on split ring resonators and coupled lines," Progress In Electromagnetics Research, Vol. 75, 153-162, 2007.
doi:10.2528/PIER07060101

17. Hasan, A. and A. E. Nadeem, "Novel microstrip hairpinline narrowband bandpass filter using via ground holes," Progress In Electromagnetics Research, Vol. 78, 393-419, 2008.
doi:10.2528/PIER07091401

18. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House, Norwood, MA, 1964.

19. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Chapter 8, 244-258, Chapter 10, 317-320, John Wiley & Sons, New York, 2001.

20. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

21. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

22. Ma, D., Z. Y. Xiao, L. Xiang, X. Wu, C. Huang, and X. Kou, "Compact dual-band bandpass filter using folded SIR with two stubs for WLAN," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.

23. Zhang, J., J.-Z. Gu, B. Cui, and X.-W. Sun, "Compact and harmonic suppression open-loop resonator bandpass filter with tri-section SIR," Progress In Electromagnetics Research, Vol. 69, 93-100, 2007.
doi:10.2528/PIER06120702

24. Marqués, R., F. Medina, and R. Rfaii-El-Idrissi, "Role of bianisotropy in negative permeability and left handed metamaterials," Phys. Rev. B, Vol. 65, 144440-144446, Apr. 200.

25. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 2099-2109, Dec. 1996.
doi:10.1109/22.543968

26. Awai, I., "Artificial dielectric resonators for miniaturized filters," IEEE Microwave Magazine, Vol. 9, No. 5, 55-64, Oct. 2008.
doi:10.1109/MMM.2008.927709