Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-12-19
Dispersion Characteristics and Optimization of Reflectivity of Binary One Dimensional Plasma Photonic Crystal Having Linearly Graded Material
By
Progress In Electromagnetics Research M, Vol. 22, 149-162, 2012
Abstract
The effect of graded permittivity profiles, filling factor and incident angles on the dispersion characteristics and reflectivity of binary one dimensional plasma photonic crystals having linearly graded dielectric materials are investigated by using the transfer matrix method. It is observed that position, width of band gap and high reflectance range can be improvised to desired level by proper choice of filling factor and graded permittivity index. The incident angle is found to affect the band gap and high reflectance range. Our analysis also shows that this plasma photonic crystal may be used for sensing applications.
Citation
Surendra Prasad, Vivek Singh, and Abhay Kumar Singh, "Dispersion Characteristics and Optimization of Reflectivity of Binary One Dimensional Plasma Photonic Crystal Having Linearly Graded Material," Progress In Electromagnetics Research M, Vol. 22, 149-162, 2012.
doi:10.2528/PIERM11101004
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2063, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Goncharov, A. A., A. V. Zatuagan, and I. M. Protsenko, "Focusing and control of multiaperture ion beams by plasma lenses," IEEE Trans. on Plasma Sci., Vol. 21, No. 5, 578-581, 1993.
doi:10.1109/27.249646

4. Dwyer, J. G., D. Murphy, J. Perin, R. Pechacek, and M. Raleigh, "On the feasibility of using an atmospheric discharge plasma as an RF antenna," IEEE Trans. on Antennas and Propag., Vol. 32, No. 2, 141-146, 1984.
doi:10.1109/TAP.1984.1143275

5. Vidmar, R. J., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Trans. on Plasma Sci., Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

6. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-90, 2004.
doi:10.1585/jspf.80.89

7. Shiveshwari, L. and P. Mahto, "Photonic band gap effect in one-dimensional plasma dielectric photonic crystals," Solid State Commun., Vol. 138, 160-164, 2006.
doi:10.1016/j.ssc.2005.11.024

8. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, 241505-241505-3, 2005.
doi:10.1063/1.2147709

9. Song, L., Z. Shuangying, and L. Sanqiu, "A study of properties of the photonic band gap of unmagnetized plasma photonic crystal," Plasma Science and Technology, Vol. 11, No. 1, 14-17, 2009.
doi:10.1088/1009-0630/11/1/03

10. Qi, L. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

11. Qi, L., Z. Yang, F. Lan, X. Gao, and Z. Shi, "Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals," Physics of Plasmas, Vol. 17, 042501, 2010.
doi:10.1063/1.3360296

12. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Physics of Plasmas, Vol. 16, 043508-043508-6, 2009.
doi:10.1063/1.3116642

13. Prasad, S., V. Singh, and A. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional plasma photonic crystals," Optik, International Journal for Light and Electron Optics, Vol. 121, No. 16, 1520-1528, 2010.=.
doi:10.1016/j.ijleo.2009.02.024

14. Prasad, S., V. Singh, and A. K. Singh, "A comparative study of dispersion relation of EM waves in ternary one-dimensional plasma photonic crystals having two different structures," Optik, International Journal for Light and Electron Optics, Vol. 122, 1279-1283, 2011.
doi:10.1016/j.ijleo.2010.08.015

15. Nino, M., T. Hirai, R. Watanabe, and , "The functionally gradient materials," J. Jpn. Soc. Compos. Mater., Vol. 13, 257-260, 1987.
doi:10.6089/jscm.13.257

16. Suresh, S. and A. Mortensen, "Fundamentals of functionally graded materials," IOM Communications Ltd., The Institute of Materials, London, 1998.

17. Hui, P. M., X. Zhang, A. J. Markworth, and D. Stroud, "Thermal conductivity of graded composites: Numerical simulations and an e®ective medium approximation," J. Mater. Science, Vol. 34, 5497-5503, 1999.
doi:10.1023/A:1004760427981

18. Huang, J. P. and K. W. Yu, "Effective nonlinear optical properties of graded metal-dielectric composite films of anisotropic particles," J. Opt. Soc. Am. B, Vol. 22, 1640-1647, 2005.
doi:10.1364/JOSAB.22.001640

19. Gao, L., J. P. Huang, and K. W. Yu, "Effective nonlinear optical properties of composite media of graded spherical particles," Phys. Rev. B, Vol. 69, 075105-075113, 2004.
doi:10.1103/PhysRevB.69.075105

20. Sang, Z. F. and Z. Y. Li, "Optical properties of one-dimensional photonic crystals containing graded materials," Optics Communications, Vol. 259, 174-178, 2006.
doi:10.1016/j.optcom.2005.08.042

21. Sang, Z. F. and Z. Y. Li, "Properties of defect modes in one-dimensional photonic crystals containing a graded defect layer," Optics Communications, Vol. 273, 162-166, 2007.
doi:10.1016/j.optcom.2006.12.008

22. Prasad, S., V. Singh, and A. K. Singh, "Modeling of a filter from one-dimensional plasma photonic crystal having exponentially graded material in submillimeter range," Journal of Optics Research, Vol. 12, No. 3-4, Article 2, 2011.

23. Prasad, S., V. Singh, and A. K. Singh, "Effect of inhomogeneous plasma density on the re°ectivity in one dimensional plasma photonic crystal," Progress In Electromagnetics Research M, Vol. 21, 211-222, 2011.
doi:10.2528/PIERM11091702

24. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series, 55, National Bureau of Standard, 1964.

25. Yeh, P., "Optical Waves in Layered Media," Wiley-Interscience, 2005.